НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла
- Дата:27.10.2024
- Категория: Разная литература / Прочее
- Название: НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ.
- Автор: Никола Тесла
- Просмотров:1
- Комментариев:0
Шрифт:
Интервал:
Закладка:
Так, в ранее продемонстрированном эксперименте, электрод накаляется из-за ритмичного воздействия свободно движущихся маленьких тел в лампе. Эти тела могут быть молекулами оставшегося газа, частичками пыли или фрагментами оторвавшегося электрода. Очевидно, что нагревание кнопки существенно зависит от давления в лампе, при котором движутся свободные частицы или атомное вещество. Нагревание еще более увеличивает число соударений в секунду и усиливает энергию каждого взаимодействия. Кроме того, электрод будет нагреваться даже в том случае, если он будет подсоединен к источнику устойчивого потенциала. В этом случае электрический ток будет переноситься от электрода свободно передвигающимися, или летающими вокруг частицами. Количество электричества, при прохождении через электрод будет достаточно, чтобы довести его до белого накала. Но в этом случае бомбардировка не будет иметь большого значения. По этой причине требуется относительно большое количество энергии, поступающей на электрод, дабы обеспечить поддержание состояния белого каления при постоянной разности потенциалов. Чем больше частота электрических импульсов, тем более экономично можно поддерживать накал электрода.
Я полагаю, что одной из главной причин этого является то, что при наличии импульсов очень высокой частоты происходит менее интенсивный обмен молекулами между частицами, свободно движущимися вокруг электрода, и поэтому нагретая в лампе среда лучше удерживается в районе электрода. Если изготовить двойную лампу, такую как на рисунке 30; состоящую из большой сферы В и маленькой b, каждая из которых содержит нить накала, установленную на платиновой проволоке W и W1, то при условии, что обе нити накала абсолютно одинаковы, обнаружится, что для поддержания определенной степени накала нити в сфере "b" требуется значительно меньше энергии, нежели для нити сферы В. Это является следствием ограниченной возможности движения частиц вокруг электрода. Кроме того, установлено, что в этом случае нить накала в сфере b меньше разрушается при работе в течение определенного периода времени в режиме белого каления. Из этого факта необходимо сделать вывод, что газ в маленькой лампе нагревается сильнее, поэтому становится лучшим проводником и требуется меньшая работа, чтобы воздействовать на электрод, так как бомбардировка становится менее интенсивной при увеличении электропроводности газа. Конечно, в этой конструкции маленькая лампа становится очень горячей и когда она нагревается до очень высокой температуры, то увеличивается конвекция и тепловое излучение наружу. Я уже имел возможность продемонстрировать лампы, которых этого недостаток значительно уменьшен. В этом случае, очень маленькая лампа, содержащая тугоплавкую кнопку, была смонтирована внутри большой лампы, а воздушное пространство между их стенками было сильно разрежено.
Когда большой шар подключен к насосу, вакуум между стенками создается постоянно, все время, пока насос работает. Внешний шар остается совершенно холодным, в то время как электрод в маленьком шаре раскален добела. Но когда насос перестал работать, а электрод оставался раскаленным достаточно длительное время, то большой шар тоже стал нагреваться. Поэтому я предположил, что если вакуумное пространство (как обнаружил Проф. Дюар}, не проводит тепло, то оно просто благодаря скорости нашего движения в пространстве, или, вообще, вследствие движения среды относительно нас, в постоянных условиях не может поддерживаться без постоянно возобновляемой среды. По всей видимости, вакуум не может находиться в постоянном состоянии вокруг горячего тела.
В вышеупомянутых конструкциях, маленькая внутренняя лампа должна, по крайней мере, на первых стадиях, защищать от бомбардировки внешнюю, большую лампу. Я подумал, а как поведет себя в этой ситуации металлический сетчатый фильтр, и для этих целей были изготов- лены несколько ламп, изображенных на рис. 31. В сферу b была вмонтирована тонкая нить на кала (или электрод) на платиновой проволоке W, проходящей через стеклянную ножку и выхо- дящая из сферы наружу. Нит ь накала/был а окружена металлическим ситом S. В процессе про- ведения экспериментов с такими лампами было обнаружено, что сито с широкими ячейками явно не оказывает ни малейшего воздействия на процесс бомбардировки сферы b. Когда ваку- ум был сильным, тень от сита ясно проецировалась на сферу, и последний нагревался за корот- кий период времени. В нескольких лампах сито S подсоединялось к платиновой проволоке, запаянной в стекло. Когда эту проволоку подсоединяли к другой клемме индукционной катуш- ки (в этом случае ЭД С поддерживали на низком уровне), или к изолированной пластине, то бомбардировка внешнего шара уменьшалась. Когда брали сито с мелкими ячейками, бомбарди- ровка большого шара также уменьшалась. Но даже тогда, когда создавалось еще большее раз- режение воздуха, а разность потенциалов трансформатора увеличивали, то увеличивалась интенсивность бомбардировки сферы и нагрев происходил быстрее, несмотря на то, что не бы- ло видно тени от сетки, вследствие меньших размеров ячеек. Но стеклянная трубка или другое плотное тело, расположенное вокруг нити накала, может полностью прекратить бомбардиров- ку и некоторое время внешняя сфера b будет оставаться совсем холодной. Конечно, когда стек- лянная трубка очень сильно нагрета, бомбардировка внешнего шара не останется незамеченной. Эксперимент с этими лампами показал, что скорость задействованных молекул или частиц должна быть значительной (хотя она совершенно незначительна по сравнению со световыми частицами), в противном случае трудно понять, как они могут проходить через тонкую метал- лическую сетку без воздействия со стороны последней. Дел о в том, что было обнаружено, что такие мелкие частички как атомы не могут воздействовать непосредственно на соизмеримом расстоянии. Что касается скорости задействованных атомов, то лорд Кельвин недавно оценил ее примерно в один километр в секунду, или около того в обычной лампе Крукса. Поскольку разность потенциалов, получаемая от катушки с пробойным разрядом, намного выше, чем по- лучаемая от обычной катушки, то и скорость частиц в лампе или другом источнике света долж- на быть больше, когда они работают от такой катушки. Предположим, что скорость частиц составляет около пяти километров в секунду и постоянна на всем протяжении траектории, как это и должно происходить в сосуде с сильным разрежением воздуха. Затем, если изменения электризации электродов будет происходить с частотой около пяти миллионов раз в секунду, то наибольшее расстояние между частицами, удаляющимися от электрода, будет равняться одно- му миллиметру. Если они могли бы взаимодействовать на таком расстоянии, то обмен в наэле- ктризованной среде, или среди атомов был бы очень медленным, и не было бы бомбардировки внешней лампы. По крайне мере, так должно быть, если действие электрода на атомы разре- женного газа будет таким, как при электризации тел, которые можем наблюдать. Горячее тело внутри вакуумной лампы всегда производит атомную бомбардировку, но оно не имеет опреде- ленного ритма, необходимого для того, чтобы его молекулы могли совершать колебания всех ви- дов.
Если лампа, содержащая кнопку или нить накала, с большой осторожностью разрежена максимально сильно и используется лучшими специалистами, то можно наблюдать, что разряд сначала не может произойти, но спустя некоторое время, вероятно, когда в лампе образуется некоторый заряд, разряд все-таки происходит и электрод накаляется.
Фактически получается, что чем выше разреженность газа, тем легче получить белый накал. Кажется, что нет других причин, по которым накаливание не могло бы быть приписано этим случаям, за исключением бомбардировки или похожего действия разреженного газа или частиц другого вещества. Но играет ли важную роль то, что воздух в лампе разрежают с большими предосторожностями? Тогда допустим, что вакуум в лампе идеален, если это является ключевым вопросом. Является ли среда, заполняющая все пространство сплошной или атомной? Если она имеет атомную структуру, то когда происходит нагревание электрода, или нити накала в вакууме, сосуд может оказаться слишком большим для эфирной бомбардировки. Нагревание проводника вообще, зависит от того, какой ток, высокой частоты или с высокой разностью потенциалов, имеет место, и будет подвергаться изменениям со стороны среды. Кроме того, существуют такж е кожные эффекты, т. е. явное увеличение омического сопротивления и т. д., что допускает, по крайней мере, различные объяснения.
Очевидно, будет более правильно в соответствии со многими наблюдаемыми явлениями, связанными с высокочастотным током, считать, что все пространство заполнено свободными атомами, нежели утверждать что оно, пустое и холодное, лишено их. Так и должно быть, если среда плотная, тогда там не может быть ни тепла, ни света. Передается ли энергий независимыми носителями или через колебания плотной среды? Этот важный вопрос еще не получил положительного ответа. Но большинство эффектов, которые здесь обсуждаются.1 особенно световые эффекты, накаливание или свечение, подразумевают наличие свободных: атомов и были бы без них невозможны.
- Музей - Виорель Ломов - Социально-психологическая
- Журнал 'Домашняя лаборатория', 2006 №12 - Гале - Газеты и журналы / Сделай сам / Хобби и ремесла
- Сборник трудов участников городской научной конференции «Дух и культура Ленинграда в тылу Советского Союза в годы Великой Отечественной войны 1941-1945 годов» - Сборник статей - История
- Литературный текст: проблемы и методы исследования. 7. Анализ одного произведения: «Москва-Петушки» Вен. Ерофеева (Сборник научных трудов) - Сборник - Языкознание
- Национальный музей Индии - Т. Мкртычев - Гиды, путеводители