НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла
- Дата:27.10.2024
- Категория: Разная литература / Прочее
- Название: НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ.
- Автор: Никола Тесла
- Просмотров:1
- Комментариев:0
Шрифт:
Интервал:
Закладка:
Можно было бы возразить, что в этом эксперименте при параллельном соединении ламп, лампа с разряженным воздухом может отбирать большую часть электрической энергии, и в этом случае наблюдаемый эффект не мог бы быть безусловно ассоциирован с действием газа в лампах. Подобные сомнения развеялись, если бы я подсоединил лампы последовательно — результат был бы тот же. После того как все подключения выполнены и разряды пошли через нити накала ламп, вновь отмечается, что нить накала лампы L/, с обычным давлением газа, остается темной, тогда как лампа L, с разреженным газом светит даже ярче, чем при нормальных для нее условиях работы, см. Рис. 22b. Если следовать общим представлениям, тo сила тока, проходящего через нити накаливания обеих ламп, должна быть одинаковой, поскольку присутствие газа вокруг нитей накаливания не влияет на него.
А сейчас я бы хотел заострить Ваше внимание еще на одном интересном свойстве, наглядно демонстрирующем эффект, зависящий от частоты изменения потенциала электрического тока. Возьмем две лампы, последовательно соединенные между собой, и подключим их к брускам В Вj так же, как и в предыдущем эксперименте, Рис 22b, но при этом значительно уменьшим частоту тока, которая ранее была очень высокой. Это можно сделать при помощи катушки самоиндукции, добавив ее в цепь, по которой проходят разряды, либо путем увеличения емкости конденсаторов. Пустив низкочастотные разряды конденсаторов через лампы, мы обнаруживаем, что лампа с разреженным воздухом L светит столь же ярко, как и в предыдущем эксперименте, а нить накала лампы с обычным воздухом L j также нагревается, хотя и не столь сильно как другая. Уменьшая силу тока, мы можем довести накал нити у лампы с не разреженным воздухом до красноты, но накал нити у лампы с разреженным воздухом останется ярким, Рис 22с, и это при том, что степень накала намного меньше, чем в ситуации, изложенной на Рис 22Ь, когда использовался ток очень высокой частоты.
В этих экспериментах газ действует в двух противоположных направлениях, непосредст- венно влияя на степень нагрева нитей накаливания: конвекция и бомбардировка. Чем выше ча- стота и напряжение тока, тем большее значимой становится бомбардировка, а конвекция, наоборот — с увеличением частоты должна уменьшаться. При постоянном токе бомбардиров- ки практически не происходит, и следовательно конвекция может существенно влиять на сте- пень накала. В результате мы наблюдаем картину похожую на предыдущую. Таким образом, если две одинаковые лампы, одна из которых с разреженным газом внутри, а другая с не раз- реженным, подсоединены последовательно, или параллельно к генератору постоянного тока, то для того, чтобы нить накала лампы с не разреженным газом оставалась раскаленной требуется электрический ток значительно большей силы. Это происходит исключительно благодаря кон- векции, а эффект становится более заметен при меньшей толщине нити накала. Некоторое вре- мя тому назад профессор Айртон и г-н Килгур опубликовали результаты количественных исследований, относящихся к термальной лучеиспускаемости, при излучении и конвекции, в ко- торых был ясно продемонстрирован положительный эффект использования тонких проводов. Этот эффект можно красиво продемонстрировать, если подготовить несколько маленьких, ко- ротких стеклянных трубок, внутрь которых вдоль продольной оси поместить самую тонкую из платиновых проволок, которую можно достать. Если в этих трубках создать максимально воз- можное разрежение воздуха, затем несколько трубок соединить параллельно и подключить к генератору постоянного тока, то во всех этих трубках можно поддерживать накал, затрачивая намного меньше электрического тока, нежели это необходимо для поддержания накала в одной трубке, в которой не создано разрежение воздуха. Если бы было возможно создать такое раз- режение, при котором конвекция была бы нулевой, то тогда без особого труда можно было бы вычислить количество тепла выделяемого при конвекции и излучении, используя количествен- ные термальные измерения. Если задействовать источник электрических импульсов высокой частоты и очень высокого напряжения, то можно было бы взять большее количество трубок и проводов для поддержания в них накала при помощи электрического тока такой силы, которой явно не хватило бы на то, чтобы нагреть провод такого же размера, находящего в окружении воздуха под обычным давлением.
Я бы хотел в данной лекции описать результат, который еще более интересен и который был получен в результате наблюдений за этими явлениями. Как уже отмечалось, небольшие изменения плотности воздуха приводят к значительным изменениям в степени накала проводов; Поэтому я предположил, что поскольку в трубке, через которую проходит световой разряд, плотность газа не одинакова в разных местах, то очень тонкий провод, помещенный внутрь трубки, может достигать высшей степени накала в местах, где плотность газа меньше, и достигать меньшей степени накала в местах с большей плотностью, где конвекция больше, а бомбардировка меньше. Поэтому была изготовлена трубка t, см. Рис. 23, внутри которой имелась очень тонкая платиновая проволока W. Плотность воздуха в трубке была средней степени разреженности. Когда она была подключена к клеммам высокочастотной катушки, то обнаружилось, что, на самом деле, накал платиновой проволоки W был не равномерный, см. Рис. 23. Впоследствии было изготовлено некоторое количество таких трубок с одной, или несколькими проволоками внутри, и каждая из них демонстрировала тот же результат.
Самый лучший эффект был отмечен, когда в трубке произошел полосатый разряд. Подобный эффект также проявился когда полосы были невидимы, демонстрируя тем самым, что даже в этом случае плотность газа в трубке была не однородной. В целом, расположение полос было таково, что участки с большей разреженностью соответствовали местам на проволоке W с белым накалом, или с наибольшей яркостью. В некоторых случая было замечено, что яркие участки на проволоке оказались покрыты плотными участками полосатого разряда, они обозначены литерой l на Рис. 23, однако, этот эффект был едва различим. Данный факт довольно убедительно объясняется тем, что конвекция в плотных и разреженных местах разнилась не очень сильно, а бомбардировка была более интенсивной в местах с большей плотностью полосатого разряда. В действительности, часто наблюдалась картина, когда при определенных условиях тонкая проволока раскалялась добела в трубке, где разреженность воздуха была невысокой. Это происходило тогда, когда напряжение па катушке было недостаточно высоким для вакуума, и могло быть вызвано различными причинами. Но во всех случаях это любопытное явление накала исчезало, когда температура трубки, или, точнее, проволоки становилась равномерной.
Если не принимать во внимание эффект, вызываемый конвекцией, то выделяются две яв- ные причины, которые вызывают накал проволоки, или нити накаливания: ток проводимости и бомбардировка. При слабом токе мы имеем дело только с первой из указанных причин, а теп- ловое действие минимально потому, что минимально сопротивление для слабого тока. При из- менении силы тока, увеличивается сопротивление, и как следствие усиливается тепловой эффект. Если частота тока очень высока, то сопротивление может возрасти до такой степени, что нить накала раскаляется до белого каления даже при очень слабой силе тока. Таким обра- зом, мы можем взять короткий и толстый брикет угля, или другой материал, и довести его до белого каления при помощи тока, сила которого несоизмеримо меньше той, которая требуется для достижения белого каления нити накала обычной лампы при помощи постоянного тока, или тока низкой частоты. Это очень важный результат, который наглядно показывает, как быстро меняются наши взгляды на этот счет и насколько быстро увеличивается объем наших знаний.
Если рассматривать явление свечения накала только в рамках его практического успеха, то для этого совершенно необходимо соблюдение двух условий: нить накала должна быть тонкой и обладать высоким сопротивлением. Но сейчас мы уже знаем, что сопротивление нити накала для тока слабой силы не имеет никакого значения. Нить накала может быть также толстой и короткой, поскольку ее можно довести до состояния белого каления при помощи тока слабой силы, если ее поместить в среду разреженного газа. Все это зависит от частоты и напряжения тока. Из этого можно сделать заключение, что использование тока высокой частоты для работы ламп накаливания предоставляет очевидные преимущества: он позволяет использовать короткую и толстую нить накала и ток слабой силы.
Если проволоку, или пить накала поместить в однородную среду, то нагрев происходит благодаря току проводимости. Но если ее поместить в сосуд с вакуумом, то это означает изменение условий работы кардинальным образом. В однородной среде газ начинает работать, а для теплового эффекта, как это было продемонстрировано во множестве экспериментов, ток проводимости имеет намного меньшую значимость, по сравнению с бомбардировкой. Это особенно важно, когда система не представляет собой замкнутую электрическую цепь и, разумеется, при очень высокой разности потенциалов. Представьте себе тонкую нить накала, помещенную в сосуд с вакуумом, один конец которой соединен с клеммой катушки высокого напряжения, а другой конец с большой изолированной пластиной. Несмотря на то, что цепь не замкнута, нить накала, как я уже показывал ранее, раскаляется до белого каления. Если частота и разность потенциалов сравнительно невелики, то нить накала нагревается током, проходящим через нее. Если увеличить частоту, и что более важно, разность потенциалов, то необходимость в использовании изолированной пластины остается, но очень небольшая, и ее вполне можно исключить. А поскольку в этом случае нить накала будет оставаться раскаленной, то можно сделать вывод, что нагрев происходит благодаря бомбардировке. Практический вариант сочетания обоих эффектов: тока проводимости и бомбардировки, представлен на Рис. 24. На этом рисунке представлена обычная лампа с очень тонкой нитью накала, один конец которой соединен с защитным экраном, выполняющего функции изолированной пластины, а другой конец соединен с клеммой источника высокого напряжения. Не стоит полагать, что только разреженный газ является значимым фактором для нагревания проводника переменным током, газ при обычном давлении тоже может быть очень важен, если разность потенциалов и частота тока чрезмерны. По этому вопросу я уже отмечал, что когда проводник оплавляется в результате удара молнии, то ток, проходящий через него, может очень слабым. Возможно, его было бы недостаточно для ощутимого нагрева проводника, находящегося в однородной среде.
- Музей - Виорель Ломов - Социально-психологическая
- Журнал 'Домашняя лаборатория', 2006 №12 - Гале - Газеты и журналы / Сделай сам / Хобби и ремесла
- Сборник трудов участников городской научной конференции «Дух и культура Ленинграда в тылу Советского Союза в годы Великой Отечественной войны 1941-1945 годов» - Сборник статей - История
- Литературный текст: проблемы и методы исследования. 7. Анализ одного произведения: «Москва-Петушки» Вен. Ерофеева (Сборник научных трудов) - Сборник - Языкознание
- Национальный музей Индии - Т. Мкртычев - Гиды, путеводители