НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла
- Дата:27.10.2024
- Категория: Разная литература / Прочее
- Название: НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ.
- Автор: Никола Тесла
- Просмотров:0
- Комментариев:0
Шрифт:
Интервал:
Закладка:
Если полностью исключить обмен молекул воздуха, местный тепловой эффект можно усилить настолько, что предмет накалится. Таким образом, например, если поместить маленький стержень или, предпочтительнее, очень тонкий провод или нить в неоткачанную колбу и соединить с выводом катушки, то его можно довести до накаливания. Можно представить это явление гораздо интереснее, если заставить верхний конец нити накала быстро вращаться по кругу, придав ему, таким образом, вид светящейся воронки (Рис. 15), которая расширяется с повышением потенциала. Когда потенциал невелик, конец нити может совершать беспорядочные движения, внезапновменяющиеся, или может описывать эллипс; но при очень высоком потенциале нить всегда вращается по кругу, так же, как и топкий провод, свободно присоединенный к выводу катушки. Эти движения вызваны, конечно, столкновениями молекул и неравномерным распределением напряжения по причине неровности и несимметричности провода или нити. Вероятно, подобные движения отсутствовали бы в случае идеально симметричного и отполированного провода. То, что это движение не обусловлено другими причинам, вполне очевидно, потому что оно не имеет определенного направления, и потому, что в очень сильно откачанной колбе оно прекращается совсем. Возможность довести предмет до накаливания в откачанной колбе, или даже совсем открытый, как представляется, открыла бы нам способ получить световые эффекты, которые пригодились бы для полезных целей, когда улучшатся методы получения быстро переменяющихся потенциалов.
При применении коммерческой катушки получение очень мощной щётки сопряжено со значительными трудностями, потому что когда используются высокие частоты и огромные потенциалы, может подвести даже самая лучшая изоляция. Обычно катушка изолирована достаточно хорошо, чтобы выдерживать напряжение между соседними намотками, так как два провода, с двойной шелковой пропарафиненной оплеткой, выдерживают напряжение в несколько тысяч вольт; трудность лежит в основном в предотвращении пробоя от вторичной обмотки к первичной, которому очень способствует испускание потоков от последней. В обмотке, конечно, самое сильное напряжение между намотками, но обычно в большей обмотке намоток так много, что опасность внезапного пробоя не столь велика. Обычно в этом направлении трудностей не встречается, и, кроме того, возможность внутренних повреждений в катушке сильно снижается из-за того, что наиболее вероятный эффект — это просто постепенное нагревание, которое при достаточном усилении не может остаться незамеченным. Так что главная необходимость — предотвратить появление потоков между первичной обмоткой и трубкой, не только из-за нагревания или возможных повреждений, но также и из- за того, что потоки могут значительно уменьшать получаемую на выводах разность потенциалов. Несколько советов о том, как это предотвратить, вероятно окажутся полезными в большинстве этих экспериментов с обыкновенной индукционной катушкой.
Один из способов, например, — это намотать короткую первичную обмотку (Рис. 16а), чтобы при такой длине разность потенциалов была не столь велика, чтобы вызвать пробой потоков через изоляционную трубку. Длину первичной обмотки следует определять экспериментально. Оба конца обмотки следует вывести с одной стороны через заглушку из изоляционного материала, вставленную в трубку как показано на рисунке. При таком расположении один вывод вторичной обмотки присоединяется к предмету, площадь которого определяется с большой тщательностью так, чтобы получать наибольший подъем потенциала. На другом выводе появляется мощная щётка, с которой можно экспериментировать.
Описанная выше схема приводит к необходимости использования первичной обмотки сравнительно небольшого размера, и она имеет тенденцию нагревается, когда хочется получать мощные эффекты в течение продолжительного времени. В таком случае лучше использовать обмотку больше (Рис. 16b) и вводить её с одной стороны трубки, пока не начнут появляться потоки. В этом случае ближайший вывод вторичной обмотки можно подсоединить к первичной или к земле, что практически одно и то же, если первичная обмотка непосредственно присоединена к машине. В случае с заземлением хорошо было бы экспериментально определить частоту, которая больше всего подходит для условий данного испытания. Другой способ более или менее устранить утечку потоков — это намотать первичную обмотку секциями и сделать подводку к ней из отдельных хорошо изолированных источников.
В большинстве этих экспериментов, когда нужно получать мощные кратковременные эффекты, полезно использовать с первичными обмотками железные сердечники. В этом случае можно намотать очень большую первичную обмотку и расположить её бок о бок рядом со вторичной, и, подсоединив ближайший вывод вторичной к первичной, вводят гладкий стальной сердечник через первичную обмотку во вторичную настолько, насколько позволят потоки. В этих условиях можно вызвать появление на другом выводе вторичной обмотки чрезвычайно мощной щётки длиной в несколько дюймов, которую вполне можно назвать "Огнем Святого Эльма". Это самым мощный озонатор, на самом деле настолько мощный, что всего нескольких минут достаточно, чтобы все помещение наполнилось запахом озона, несомненно, обладающего поразительными химическими свойствами.
Для получения озона прекрасно подходят токи очень высокой частоты, не только из-за их преимуществ в плане преобразований, но и потому что озонирующее действие разряда зависит как от частоты, так и от потенциала; и это несомненно подтверждает эксперимент.
Если в этих экспериментах использовать стальной сердечник, следует внимательно следить за ним, так как он может чрезмерно нагреться за чрезвычайно короткое время. Чтобы вы получили представление о том, как быстро он нагревается, я могу сказать, что если пропустить мощный ток через обмотку со многими витками, то внесения внутрь неё тонкой железной проволоки не более, чем на секунду, будет достаточно, чтобы нагреть ее примерно до 100 °C.
Но это быстрое нагревание не должно заставить нас отказаться от использования стальных сердечников в экспериментах с быстро переменяющимися токами. В течение долгого времени я был убежден в том, что в промышленном токоснабжении с применением трансформаторов можно осуществить примерно следующий план. Мы можем использовать небольшой железный сердечник, секционный или даже, может быть, нет. Мы можем окружить этот сердечник толстым слоем жаростойкого материала, который слабо проводит тепло, а поверх него разместить первичную и вторичную обмотки. Используя либо более высокие частоты, либо магнитные силы, мы можем нагреть стальной сердечник с помощью гистерезиса и вихревых токов до такой степени, чтобы он достиг почти максимальной [магнитной] проницаемости, которая, как показал Хопкинсон, может быть в целых шестнадцать раз больше, чем при обычных температурах. Если стальной сердечник хорошо защищен, он не будет портиться из- за нагревания, и если покрытие из жаростойкого материала будет достаточно толстым, то, несмотря на высокую температуру, сможет излучаться только ограниченное количество энергии. Мною были сконструированы трансформаторы для этого проекта, но из-за недостатка времени они ещё не прошли тщательную проверку.
Другой способ приспособить стальные сердечники к быстрым переменам, или, говоря в общем, снизить фрикционные потери, — это создать с. помощью постоянного намагничивания поток примерно в семь или восемь тысяч линий на квадратный сантиметр, проходящий сквозь стальной сердечник, и затем работать со слабыми магнитными силами и преимущественно высокими частотами вокруг точки максимальной проницаемости. Этим способом достигается более высокая эффективность преобразования и больший выход. Я также применил этот принцип в связи с машинами, на которых отсутствует обращение полярности. В машинах этого типа выход не очень большой по причине малого количества полярных выступов, так как максимумы и минимумы намагничивания далеки от точки максимальной проницаемости. Но при очень большом количестве полярных выступов можно достичь нужной скорости изменений, при этом намагничивание не меняется настолько, чтобы сильно отклоняться от точки максимальной проницаемости, и получается значительный выход.
Средства, описанные выше, относятся исключительно к использованию промышленных катушек, сделанных как они обычно. Если нужно сделать катушку специально для целей проведения описанных мной экспериментов, или, в общем, чтобы она могла выдерживать максимально возможную разность потенциалов, то лучше использовать конструкцию, изображенную на Рис. 17. В этом случае катушка состоит из двух независимых частей, которые наматываются противоположно, и соединение их друг с другом делается вблизи первичной обмотки. Так как напряжение в середине равно нулю, нет особой опасности пробоя на первичную обмотку, и не требуется много изоляции. Однако в некоторых случаях среднюю точку можно подсоединить к первичной обмотке или заземлить. В такой катушке точки с наибольшей разностью потенциалов находятся далеко друг от друга, и катушка способна выдерживать огромное напряжение. Обе части могут быть подвижными, чтобы допускать небольшое регулирование емкости.
- Музей - Виорель Ломов - Социально-психологическая
- Журнал 'Домашняя лаборатория', 2006 №12 - Гале - Газеты и журналы / Сделай сам / Хобби и ремесла
- Сборник трудов участников городской научной конференции «Дух и культура Ленинграда в тылу Советского Союза в годы Великой Отечественной войны 1941-1945 годов» - Сборник статей - История
- Литературный текст: проблемы и методы исследования. 7. Анализ одного произведения: «Москва-Петушки» Вен. Ерофеева (Сборник научных трудов) - Сборник - Языкознание
- Национальный музей Индии - Т. Мкртычев - Гиды, путеводители