НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла
0/0

НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла

Уважаемые читатели!
Тут можно читать бесплатно НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла. Жанр: Прочее. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла:
Читем онлайн НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 7 8 9 10 11 12 13 14 15 ... 138

Чем выше диэлектрическая проницаемость вносимого диэлектрика, тем мощнее производимый эффект. Благодаря этому потоки проявляются при чрезвычайно высоких потенциалах, даже при толщине стекла от полтора до двух дюймов. Но кроме нагревания, вызванного бомбардировкой, определенное нагревание идет, без сомнения, и в диэлектрике, причем в стекле значительно больше, чем в эбоните. Я отношу это явление к большей диэлектрической проницаемости у стекла, вследствие которой, при одинаковой разности потенциалов, в стекло вбирается большее количество энергии, чем в резину. Это как если подсоединить к батарее медный и латунный провода одинаковых размеров. Медный провод, хотя и являясь более совершенным проводником, будет нагреваться сильнее, по причине того, что вбирает больше тока. Таким образом, то, что в иных обстоятельствах является положительным качество стекла, здесь превращается в недостаток. Стекло обычно дает дорогу [пробою] гораздо быстрее, чем эбонит; когда оно нагревается до определенной степени, разряд внезапно пробивает через [него] в определенной точке, принимая затем форму обычной дуги.

Эффект нагрева, вызванный молекулярной бомбардировкой диэлектрика, конечно, уменьшился бы, при повышении давления воздуха, и при огромном давлении он стал бы ничтожен, если соответственно не увеличить частоту.

В этих экспериментах мы можем часто наблюдать, что если шары расположены за пределами разрядного расстояния, то приближение, например, стеклянной пластины может индуцировать искру, проскакивающую между шарами. Это происходит, когда емкость шаров несколько ниже критического значения, дающего самую большую разницу потенциалов на выходах катушки. Приближение диэлектрика увеличивает диэлектрическую проницаемость пространства между шарами, давая такой же эффект, как если бы увеличивалась емкость шаров. Напряжение на выводах может тогда вырасти настолько, что воздушное пространство пробивается. Эксперимент лучше всего производить с плотным стеклом или слюдой.

Еще одно интересное наблюдение с пластиной из изоляционного материала: когда разряд проходит через нее, она сильно притягивается одним из шаров, а именно тем, который ближе к ней. Это обусловлено, очевидно, меньшим механическим действием бомбардировки с той стороны, и, возможно, также большей электризацией.

Из поведения диэлектриков в этих экспериментах мы можем сделать вывод, что наилучшим изолятором для этих быстро переменяющихся токов был бы именно тот, который обладал бы наименьшей диэлектрической проницаемостью и в тоже время мог выдерживать самую большую разность потенциалов. Это, таким образом, указывает нам два диаметрально противоположных способа обеспечения нужной изоляции, а именно: использовать либо хороший вакуум, либо газ под большим давлением; но первое было бы предпочтительнее. К сожалению, ни один из этих двух способов не осуществим легко на практике.

Особенно интересно отметить поведение очень высокого вакуума в этих экспериментах. Если тестовую трубку с внешними электродами и откачанную до наивысшей возможной степени подсоединить к выводам катушки (Рис. 9), то электроды трубки немедленно нагреются до высокой температуры, и стекло на каждом конце трубки будет сильно фосфоресцировать, но середина трубки оказывается сравнительно темной и некоторое время остается холодной.

Когда частота настолько высока, что наблюдается разряд, показанный на Рис. 7, в катушке, без сомнения, происходит значительное рассеивание. Тем не менее катушка может работать длительное время, потому что нагревание постепенное.

Несмотря на то, что разность потенциалов может быть огромной, мало что чувствуешь, когда разряд проходит сквозь тело, если защищены руки. Это происходит в некоторой степени благодаря более высокой частоте, но в основном из-за того, что во вне становится меньше энергии, когда разность потенциалов достигает огромной величины, благодаря тому обстоятельству, что с ростом потенциала энергия, поглощаемая катушкой, растет как квадрат потенциала. До определенного момента энергия во вне увеличивается вместе с ростом потенциала, затем она начинает быстро спадать. Таким образом, в действии обыкновенной индукционной катушки высокого напряжения существует любопытный парадокс: в то время как при определенном токе через первичную обмотку удар может оказаться фатальным, при токе во много раз сильнее этого он может быть совершенно безвредным, даже если частота одинакова. При высоких частотах и чрезвычайно высоких потенциалах, когда выходы катушки не подсоединены к некоторого размера предметам, практически вся энергия, подаваемая в первичную обмотку, забирается катушкой. Не наблюдается ни пробоя, ни местных повреждений, но весь материал, изоляционный и проводящий, однородно нагревается.

Во избежание недоразумений в отношении физиологического действия переменных токов очень высокой частоты я считаю необходимым сказать, что хотя они, бесспорно, несравненно менее опасны, чем токи низкой частоты, не следует всё же полагать, что они совсем безвредны. Вышесказанное относится исключительно к токам от обыкновенной индукционной катушки высокого напряжения, токи которой обязательно очень малы; тики же, получаемые непосредственно от машины или от вторичной обмотки с низким сопротивлением производят более или менее мощные воздействия и могут нанести серьезные повреждения, особенно если при этом используются еще и конденсаторы.

Потоковый разряд индукционной катушки высокого напряжения отличается во многих отношениях от разряда мощной электростатической машины. Он не имеет ни фиолетового свечения положительного, ни яркости отрицательного статического разряда, но представляет собой нечто среднее, будучи, конечно, попеременно положительным и отрицательным. Но так как утечка потоков более интенсивна, когда острие или вывод катушки заряжен положительно, чем когда он заряжен отрицательно, то из этого следует, что вершина щётки более похожа па положительный, а ее основание — на отрицательный статический разряд. В темноте, если этот разряд очень мощный, основание "щётки" кажется почти белым. Движение воздуха, вызванное истечением потоков, хотя и может быть очень сильным — часто до такой степени, что его можно ощутить на приличном расстоянии от катушки, — тем не менее, учитывая величину разряда, меньше, чем получается от положительной щётки от электростатической машины. И влияет на яркость свечения гораздо менее мощно. Исходя из природы данного явления мы можем заключить, что чем выше частота, тем меньше должно быть, конечно же, движение воздуха, вызываемое потоками, и при достаточно высоких частотах не будет наблюдаться никакого движения воздуха при условиях нормального атмосферного давления.

При частотах, получаемых посредством машины, механический эффект достаточно велик, чтобы вращать со значительной скоростью большие колесики, которые в темноте являют собой прекрасное зрелище, благодаря обилию потоков (Рис. 10).

В общем, многие эксперименты, обычно проводимые с электростатической машиной, можно провести и с индукционной катушкой, работающей от быстро переменяющихся токов. Получаемые результаты, однако, гораздо более поразительны и обладают несравнимо большей силой. Когда небольшой кусок обычного провода с хлопчатобумажной изоляционной обмоткой, Рис. 11, присоединяют к одному выводу катушки, потоки, исходящие изо всех точек провода, могут быть столь интенсивными, что производят значительный световой эффект. Когда потенциалы и частоты очень высоки, провод, изолированный гуттаперчей или резиной и присоединенный к одному из выводов, кажется покрытым светящейся пленкой. Очень тонкий оголенный провод, присоединенный к выводу, испускает мощные потоки и постоянно вибрирует взад и вперед или описывает круг, что производит необычный эффект (Рис. 12). Некоторые из этих экспериментов были описаны мною в The Electrical World от 21 февраля 1891 года.

Другая особенность быстро чередующегося разряда индукционной катушки — это его совершенно другое поведение по отношению к остриям и к закругленным поверхностям.

Если толстый провод с шариком на одном конце и острием на другом подсоединить к положительному выводу электростатической машины, утечка практически всего заряда произойдет через острие по причине неизмеримо более высокого напряжения, зависящего от радиуса кривизны. Но если такой провод подсоединить к одному из выходов индукционной катушки, то можно наблюдать, что при очень высоких частотах потоки испускаются из шара так же обильно, как и из острия (Рис. 13).

Трудно представить, что мы могли бы добиться в равной степени такого же результата и электростатической машине, по той простой причине, что напряжение увеличивается как квадрат плотности, которая в свою очередь пропорциональна радиусу кривизны. Следовательно, при постоянном потенциале потребовался бы огромный заряд, чтобы заставить потоки идти из полированного шара когда он соединен с острием. Но в случае с индукционной катушкой, разряд которой с большой быстротой чередуется, дело обстоит по-другому. Здесь мы имеем дело с двумя разными тенденциями. Во-первых, есть тенденция к утечке, которая существует в состоянии покоя и зависит от радиуса кривизны; во-вторых, есть тенденция к рассеиванию в окружающий воздух от эффекта конденсатора, которая зависит от поверхности. Когда одна из этих тенденций достигает максимума, другая находится в минимуме. На острие световой поток возникает в основном благодаря тому, что молекулы воздуха вступают в физический контакт с острием; они притягиваются и отталкиваются, заряжаются и разряжаются, и их атомные заряды таким образом возмущаются, вибрируют и испускают световые волны. На шаре, напротив, этот эффект без сомнений производится в огромной степени индуктивно, и молекулы воздуха не обязательно вступают в контакт с шаром, хотя это, несомненно, происходит. Чтобы убедиться в этом, нам необходимо лишь усилить действие конденсатора, например, окружив шар на некотором расстоянии лучшим проводником, чем окружающая среда, при этом данный проводник, конечно, должен быть изолирован. Или его можно также окружить лучшим диэлектриком и приблизить изолированный проводник; в обоих случаях потоки будут испускаться обильнее. Также, чем больше шар при данной частоте, или чем выше частота, тем более шар будет иметь преимущества перед острием. Но поскольку требуется определенная интенсивность эффекта, чтобы потоки стали видимыми, очевидно, что в описанном эксперименте не следует брать слишком большой шар.

1 ... 7 8 9 10 11 12 13 14 15 ... 138
На этой странице вы можете бесплатно читать книгу НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла бесплатно.

Оставить комментарий

Рейтинговые книги