Занимательная астрономия - Яков Перельман
- Дата:28.08.2024
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Название: Занимательная астрономия
- Автор: Яков Перельман
- Просмотров:0
- Комментариев:0
Аудиокнига "Занимательная астрономия" от Якова Перельмана
🌌 "Занимательная астрономия" - это увлекательное путешествие по вселенной, рассказанное с яркими иллюстрациями и интересными фактами. Вас ждет увлекательное погружение в мир звезд, планет и галактик, которое расширит ваш кругозор и заставит восхищаться бесконечностью космоса.
👨🚀 Главный герой книги - любознательный исследователь, который стремится понять тайны вселенной и делится своими знаниями с читателями. Он познакомит вас с удивительными явлениями космоса, расскажет о звездах, планетах, черных дырах и других загадочных объектах.
📚 Яков Перельман - известный советский физик и популяризатор науки, автор множества книг по физике и астрономии. Его произведения отличаются доступным языком и увлекательным изложением сложных тем.
🎧 На сайте knigi-online.info вы можете бесплатно и без регистрации слушать аудиокниги на русском языке. Здесь собраны лучшие произведения разных жанров, которые позволят вам окунуться в мир книг в любое время.
🌠 "Занимательная астрономия" - это не просто аудиокнига, а возможность расширить свои знания о космосе и поразиться его величию. Погрузитесь в увлекательное путешествие по звездам и планетам вместе с Яковом Перельманом!
Шрифт:
Интервал:
Закладка:
Мы уже знаем, что дело происходило какраз наоборот: определение массы земного шара предшествовало определению его средней плотности. Она оказалась равной 5,5 г на 1 см3 – гораздо больше, чем средняя плотность пород, составляющих земную кору. Это указывает на то, что в глубине земного шара залегают очень тяжелые вещества. По их предполагаемому удельному весу (а также и по другим основаниям) раньше думали, что ядро нашей планеты состоит из ж е л е з а, сильно уплотненного давлением вышележащих масс. Сейчас считают, что в общем центральные области Земли не отличаются по составу от коры, но плотность их больше вследствие огромного давления.
Вес Солнца и ЛуныКак ни странно, вес далекого Солнца оказывается несравненно проще определить, чем вес гораздо более близкой к нам Луны. (Само собой разумеется, что слово «вес» по отношению к этим светилам мы употребляем в том же условном смысле, как и для Земли: речь идет об определении массы.)
Масса Солнца найдена путем следующего рассуждения. Опыт показал, что 1 г притягивает 1 г на расстоянии I см с силой, равной 1/15 000 000 мг. Взаимное притяжение f двух тел с массами Ми т на расстоянии D выразится согласно закону всемирного тяготения так:
Если М – масса Солнца (в граммах), т – масса Земли, D – расстояние между ними, равное 150 000 000 км, то взаимное их притяжение в миллиграммах равно (1/15 000 000)х(15 000 000 000 0002)мг[50] С другой стороны, эта сила притяжения есть та центростремительная сила, которая удерживает нашу планету на ее орбите и которая по правилам механики равна (тоже в миллиграммах) mV2/D, где т – масса Земли (в граммах), V – ее круговая скорость, равная 30 км/с = 3 000 000 см/с, a D – расстояние от Земли до Солнца. Следовательно,
Из этого уравнения определяется неизвестное М (выраженное, как сказано, в граммах):
М=2х1033г = 2х1027т.
Разделив эту массу на массу земного шара, т. е. вычислив
получаем 1/3 миллиона.
Другой способ определения массы Солнца основан на использовании третьего закона Кеплера. Из закона всемирного тяготения третий закон выводится в следующей форме:
где
– масса Солнца, Т – звездный период обращения планеты, а – среднее расстояние планеты от Солнца им– масса планеты. Применяя этот закон к Земле и Луне, получим
Подставляя известные из наблюдений
и пренебрегая в первом приближении в числителе массой Земли, малой по сравнению с массой Солнца, а в знаменателе массой Луны, малой по сравнению с массой Земли, получим
Зная массу Земли, получим массу Солнца.
Итак, Солнце тяжелее Земли в треть миллиона раз. Нетрудно вычислить и среднюю плотность солнечного шара: для этого нужно лишь его массу разделить на объем. Оказывается, что плотность Солнца примерно в четыре раза меньше плотности Земли.
Что же касается массы Луны, то, как выразился один астроном, «хотя она к нам ближе всех других небесных тел, взвесить ее труднее, чем Нептун, самую далекую (тогда) планету». У Луны нет спутника, который помог бы вычислить ее массу, как вычислили мы сейчас массу Солнца. Ученым пришлось прибегнуть к другим, более сложным методам, из которых упомянем только один. Он состоит в том, что сравнивают высоту прилива, производимого Солнцем, и прилива, порождаемого Луной.
Высота прилива зависит от массы и расстояния порождающего его тела, а так как масса и расстояние Солнца известны, расстояние Луны – тоже, то из сравнения высоты приливов и определяется масса Луны. Мы еще вернемся к этому расчету, когда будем говорить о приливах. Здесь сообщим лишь окончательный результат: масса Луны составляет 1/81 массы Земли (рис. 89).
Зная диаметр Луны, вычислим ее объем; он оказывается в 49 раз меньшим объема Земли. Поэтому средняя плотность нашего спутника составляет 49/81 =0,6 плотности Земли.
Рис. 89. Земля «весит» в 81 раз больше Луны
Значит, Луна в среднем состоит из более рыхлого вещества, нежели Земля, но более плотного, чем Солнце. Дальше мы увидим (см. табличку на стр. 199), что средняя плотность Луны выше средней плотности большинства планет.
Вес и плотность планет и звездСпособ, каким «взвесили» Солнце, применим и к взвешиванию любой планеты, имеющей хотя бы один спутник.
Зная среднюю скорость v движения спутника по орбите и его среднее расстояние D от планеты, мы приравниваем центростремительную силу, удерживающую спутник на его орбите, mv2/D, силе взаимного притяжения спутника и планеты, т. е. kmM/D2, где к – сила притяжения 1 г к 1 г на расстоянии 1 см, m – масса спутника, М – масса планеты:
откуда
По этой формуле легко вычислить массу M планеты.
Третий закон Кеплера применим и к этому случаю:
И здесь, пренебрегая в скобках малыми слагаемыми, получим отношение массы Солнца к массе планеты
Зная массу Солнца, можно легко определить массу планеты.
Подобное же вычисление применимо и к двойным звездам с той лишь разницей, что здесь в результате вычисления получаются не массы отдельных звезд данной пары, а с у м м а их масс.
Гораздо труднее определить массу спутников планет, а также массу тех планет, которые вовсе не имеют спутников.
Например, массы Меркурия и Венеры найдены из учета того возмущающего влияния, которое они оказывают друг на друга, на Землю, а также на движение некоторых комет.
Для астероидов, масса которых настолько незначительна, что они не оказывают один на другой никакого заметного возмущающего действия, задача определения массы, вообще говоря, неразрешима. Известен лишь – и то гадательно – высший предел совокупной массы всех этих крошечных планеток.
По массе и объему планет легко вычисляется их средняя плотность. Результаты сведены в следующую табличку:
Мы видим, что наша Земля и Венера – самые плотные из всех планет нашей системы. Малые средние плотности больших планет объясняются тем, что твердое ядро каждой большой планеты покрыто громадным слоем атмосферы, которая обладает малой массой, но весьма увеличивает видимый объем планеты.
Тяжесть на Луне и на планетахЛюди, мало начитанные в астрономии, нередко высказывают изумление по поводу того, что ученые, не посетив Луны и планет, уверенно говорят о силе тяжести на их поверхности. Между тем совсем нетрудно рассчитать, сколько килограммов должна весить гиря, перенесенная на другие миры. Для этого нужно лишь знать радиус и массу небесного тела.
Определим, например, напряжение силы тяжести на Луне. Масса Луны, как мы знаем, в 81 раз меньше массы Земли. Если бы Земля обладала такой маленькой массой, то напряжение силы тяжести на ее поверхности было бы в 81 раз слабее, чем теперь. Но по закону Ньютона шар притягивает так, словно вся его масса сосредоточена в центре. Центр Земли отстоит от ее поверхности на расстоянии земного радиуса, центр Луны – на расстоянии лунного радиуса. Но лунный радиус составляет 27/100 земного, а от уменьшения расстояния в 100/27 раза сила притяжения увеличивается в (100/27)2 раз. Значит, в конечном итоге напряжение силы тяжести на поверхности Луны составляет
Итак, гиря в 1 кг, перенесенная на поверхность
Луны, весила бы там только 1/6 кг, но, конечно, уменьшение веса можно было бы обнаружить только с помощью пружинных весов (рис. 90), а не рычажных.
Рис. 90. Сколько весил бы человек на разных планетах. Вес человека на Плутоне – не 18 кг, а всего лишь 3,6 кг (по современным данным)
Любопытно, что если бы на Луне существовала вода, пловец чувствовал бы себя в лунном водоеме так же, как на Земле. Его вес уменьшился бы в шесть раз, но во столько же раз уменьшился бы и вес вытесняемой им воды; соотношение между ними было бы такое же, как на Земле, и пловец погружался бы в воду Луны ровно на столько же, на сколько погружается он у нас.
Впрочем, усилия подняться над водой дали бы на Луне более заметный результат: раз вес тела пловца уменьшился, оно может быть поднято меньшим напряжением мускулов.
Ниже приведена табличка величины силы тяжести на разных планетах по сравнению с земной.
Как видно из таблички, наша Земля по силе тяжести стоит на пятом месте в солнечной системе после Юпитера, Нептуна, Сатурна и Урана.[51]
- Занимательная физика. Книга 2 - Перельман Яков Исидорович - Учебная литература
- Циолковский. Его жизнь, изобретения и научные труды. - Яков Исидорович Перельман - Биографии и Мемуары
- Секретная цивилизация Луны - Игорь Осовин - Военная история
- Ориентировка по звездам - Николай Кондратьев - Науки о космосе
- Занимательная стандартизация - Вадим Белоусов - Детская образовательная литература