Занимательная астрономия - Яков Перельман
0/0

Занимательная астрономия - Яков Перельман

Уважаемые читатели!
Тут можно читать бесплатно Занимательная астрономия - Яков Перельман. Жанр: Прочая научная литература. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Занимательная астрономия - Яков Перельман:
 Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.

Аудиокнига "Занимательная астрономия" от Якова Перельмана



🌌 "Занимательная астрономия" - это увлекательное путешествие по вселенной, рассказанное с яркими иллюстрациями и интересными фактами. Вас ждет увлекательное погружение в мир звезд, планет и галактик, которое расширит ваш кругозор и заставит восхищаться бесконечностью космоса.



👨‍🚀 Главный герой книги - любознательный исследователь, который стремится понять тайны вселенной и делится своими знаниями с читателями. Он познакомит вас с удивительными явлениями космоса, расскажет о звездах, планетах, черных дырах и других загадочных объектах.



📚 Яков Перельман - известный советский физик и популяризатор науки, автор множества книг по физике и астрономии. Его произведения отличаются доступным языком и увлекательным изложением сложных тем.



🎧 На сайте knigi-online.info вы можете бесплатно и без регистрации слушать аудиокниги на русском языке. Здесь собраны лучшие произведения разных жанров, которые позволят вам окунуться в мир книг в любое время.



🌠 "Занимательная астрономия" - это не просто аудиокнига, а возможность расширить свои знания о космосе и поразиться его величию. Погрузитесь в увлекательное путешествие по звездам и планетам вместе с Яковом Перельманом!

Читем онлайн Занимательная астрономия - Яков Перельман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 29 30 31 32 33 34 35 36 37 ... 39

Два решения задачи, как видим, находятся в резком разногласии. Один автор утверждает, что ядро упадет далеко к западу от места выстрела, другой – что оно должно упасть непременно в жерло орудия. Кто же прав?

Строго говоря, неверны оба решения, но фламмарионово гораздо ближе к истине. Ядро должно упасть к западу от пушки, однако не столь значительно, как утверждает первый автор, и не в самое жерло, как был убежден второй.

Задача, к сожалению, не может быть решена средствами элементарной математики. Поэтому ограничусь лишь тем, что приведу здесь окончательный результат.

Если обозначим начальную скорость ядра через v угловую скорость вращения земного шара через ш, а ускорение силы тяжести через g, то для расстояния х точки падения ядра к западу от пушки получаются выражения:

на экваторе ω

а на широте φ

Применяя формулу к задаче, поставленной первым автором, имеем

Подставив эти величины в первую формулу, получаем х = 520 км: ядро упадет в 520 км к западу от пушки (а не в 4000 км, как думал первый автор).

Что же дает формула для случая, рассмотренного Фламмарионом? Выстрел произведен был не на экваторе, а близ Парижа на широте 48°. Начальную скорость ядра старинной пушки примем равной 300 м/с. Подставив во вторую формулу

получаем х = 18 м; ядро упадет на 18 м к западу от пушки (а не в самое жерло, как полагал французский астроном). При этом, конечно, нами не было принято во внимание возможное отклоняющее действие воздушных течений, способное заметно исказить этот результат.

Вес на большой высоте

В расчетах предыдущей статьи принималось, между прочим, в соображение одно обстоятельство, на которое мы не обратили до сих пор внимания читателя. Речь идет о том, что по мере удаления от Земли сила тяжести ослабевает. Тяжесть есть не что иное, как проявление всемирного тяготения, а сила взаимного притяжения двух тел при возрастании расстояния между ними быстро ослабевает. Согласно закону Ньютона сила притяжения убывает пропорционально квадрату расстояния; при этом расстояние следует считать от центра земного шара, потому что Земля притягивает все тела так, словно вся ее масса сосредоточена в центре. Поэтому сила притяжения на высоте 6400 км, т. е. в месте, удаленном от центра Земли на 2 земных радиуса, ослабевает в четыре раза по сравнению с силой притяжения на земной поверхности.

Для брошенного вверх артиллерийского снаряда это должно проявиться в том, что снаряд поднимется выше, чем в случае, если бы тяжесть с высотой не убывала. Для снаряда, выпущенного отвесно вверх со скоростью 8000 м в секунду, мы приняли, что он поднимется до высоты 6400 км. Между тем, если вычислить высоту поднятия этого снаряда по общеизвестной формуле, не учитывающей ослабления тяжести с высотой, получится высота вдвое меньшая. Сделаем это вычисление. В учебниках физики и механики приводится формула для вычисления высоты h поднятия тела, брошенного отвесно вверх со скоростью v при неизменном ускорении силы тяжести g:

Для случая v = 8000 м/с, g = 9,8 м/с2 получаем

Это почти вдвое ниже той высоты поднятия, которая указана в предыдущей статье. Разногласие обусловлено, как уже говорилось, тем, что, пользуясь формулами учебника, мы не приняли во внимание ослабления силы тяжести с высотой. Ясно, что если снаряд притягивается Землей слабее, он должен при данной скорости подняться выше.

Не следует спешить с заключением, что приводимые в учебниках формулы для вычисления высоты подъема тела, брошенного вверх, неверны. Они верны в тех границах, для которых предназначаются, и становятся неверными лишь тогда, когда вычислитель выходит с ними за указанные границы. Предназначаются же эти формулы для весьма небольших высот, где ослабление силы тяжести еще настолько незначительно, что им можно пренебречь. Так, для снаряда, брошенного вверх с начальной скоростью 300 м/с, ослабление силы тяжести сказывается весьма мало.

Но вот интересный вопрос: ощутительно ли уменьшение силы тяжести для высот, с которыми имеют дело современная авиация и воздухоплавание? Заметно ли уже на этих высотах уменьшение веса тел? В 1936 г. летчик Владимир Коккинаки поднимал в своей машине различные грузы на большую высоту: ½ т на высоту 11 458 м, 1 т – на 12 100 м и 2 т на 11 295 м. Спрашивается: сохраняли ли эти грузы на указанных рекордных высотах свой первоначальный вес или теряли там заметную его часть? С первого взгляда может казаться, что подъем над земной поверхностью на десяток с лишним километров не может заметно уменьшить вес груза на такой большой планете, как Земля. Находясь у земной поверхности, груз отстоял от центра нашей планеты на 6400 км; поднятие на 12 км увеличивает это расстояние до 6412 км: прибавка как будто чересчур ничтожная, чтобы могла сказаться убыль в весе. Расчет, однако, говорит другое: потеря веса получается довольно ощутимая.

Выполним вычисление для одного случая: например, для подъема Коккинаки с грузом 2000 кг на 11 295 м. На этой высоте самолет находится дальше от центра земного шара, нежели при старте, в 6411,3/6400 раз.

Сила притяжения ослабевает здесь в

Следовательно, груз на указанной высоте должен весить

Если выполнить это вычисление (для чего удобно воспользоваться приемами приближенного расчета,[47] то выяснится, что груз в 2000 кг на рекордной высоте весил только 1993 кг; он стал на 7 кг легче – убыль веса довольно ощутительная. Килограммовая гиря на такой высоте вытягивала бы на пружинном безмене только 996,5 г; 3,5 г веса теряется.

Еще большую потерю веса должны были обнаружить наши стратонавты, достигшие высоты 22 км: 7 г на каждый килограмм.

Для рекордного подъема летчика Юмашева, поднявшего в 1936 г. груз в 5000 кг на высоту 8919 м, можно вычислением установить общую потерю веса грузом в 14 кг.

В 1959 г. летчик В.К. Коккинаки поднял на самолете ИЛ-18 на высоту 12 118 м груз в 20 т, в 1961 г. экипаж в составе И.М. Сухомлина, П.В. Солдатова, Н.Ф. Носова, В.И. Богданова на ТУ-114 поднял на 12 535 м груз в 30 035 кг. Пользуясь изложенным выше, читатель без труда сможет выполнить вычисление того, как велика была в этих случаях потеря веса.

С циркулем по планетным путям

Из трех законов планетных движений, с огромными усилиями вырванных у природы гением Кеплера, наименее понятен для многих, пожалуй, первый.

Закон этот утверждает, что планеты движутся по эллипсам. Почему же именно по эллипсам? Казалось бы, раз от Солнца во все стороны исходит одинаковая сила, ослабевающая с удалением в одинаковой мере, то планеты должны обходить Солнце по кругам, а никак не по вытянутым замкнутым путям, в которых Солнце к тому же не занимает центрального положения. Недоумения подобного рода исчерпывающе разъясняются при математическом рассмотрении вопроса. Но необходимыми познаниями из высшей математики владеют лишь немногие друзья неба. Постараемся же сделать ощутительной правильность законов Кеплера для тех наших читателей, которые могут распоряжаться только арсеналом элементарной математики.

Вооружившись циркулем, масштабной линейкой и большим листом бумаги, будем сами строить планетные пути и таким образом убедимся графически, что получаются они такими, какими должны быть согласно законам Кеплера.

Рис. 83. Сила притяжения планеты Солнцем увеличивается с уменьшением расстояния

Движение планет управляется силой тяготения. Займемся ею. Кружок в правой части рис. 83 изображает некое воображаемое солнце; влево от него – воображаемая планета. Расстояние между ними пусть будет 1 000 000 км, на чертеже оно представлено 5 см – в масштабе 200 000 км в 1 см.

Стрелка в 0,5 см длины изображает силу, с какой притягивается к Солнцу наша планета (рис. 83). Пусть теперь планета под действием этой силы приблизилась к Солнцу и находится от него на расстоянии всего 900 000 км, т.е. 4,5 см на нашем чертеже. Притяжение планеты к Солнцу теперь усилится по закону тяготения в (10/9)2, т. е. в 1,2 раза. Если раньше притяжение изображено было стрелкой в 1 единицу длины, то теперь мы должны придать стрелке размер 1,2 единицы. Когда расстояние уменьшится до 800 000 км, т. е. до 4 см на нашем чертеже, сила притяжения возрастет в (5/4)2 т. е. в 1,6 раза, и изобразится стрелкой в 1,6 единицы.

При дальнейшем приближении планеты к Солнцу до расстояния 700, 600, 500 тысяч км сила притяжения соответственно выразится стрелками в 2, в 2,8 и в 4 единицы длины.

Можно представить себе, что те же стрелки изображают не только притягивающие силы, но и перемещения, которые тело совершает под влиянием этих сил за единицу времени (в этом случае перемещения пропорциональны ускорениям, а стало быть, и силам). В дальнейших наших построениях мы будем пользоваться этим чертежом как готовым масштабом перемещений планеты.

1 ... 29 30 31 32 33 34 35 36 37 ... 39
На этой странице вы можете бесплатно читать книгу Занимательная астрономия - Яков Перельман бесплатно.

Оставить комментарий

Рейтинговые книги