Занимательная астрономия - Яков Перельман
- Дата:28.08.2024
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Название: Занимательная астрономия
- Автор: Яков Перельман
- Просмотров:0
- Комментариев:0
Аудиокнига "Занимательная астрономия" от Якова Перельмана
🌌 "Занимательная астрономия" - это увлекательное путешествие по вселенной, рассказанное с яркими иллюстрациями и интересными фактами. Вас ждет увлекательное погружение в мир звезд, планет и галактик, которое расширит ваш кругозор и заставит восхищаться бесконечностью космоса.
👨🚀 Главный герой книги - любознательный исследователь, который стремится понять тайны вселенной и делится своими знаниями с читателями. Он познакомит вас с удивительными явлениями космоса, расскажет о звездах, планетах, черных дырах и других загадочных объектах.
📚 Яков Перельман - известный советский физик и популяризатор науки, автор множества книг по физике и астрономии. Его произведения отличаются доступным языком и увлекательным изложением сложных тем.
🎧 На сайте knigi-online.info вы можете бесплатно и без регистрации слушать аудиокниги на русском языке. Здесь собраны лучшие произведения разных жанров, которые позволят вам окунуться в мир книг в любое время.
🌠 "Занимательная астрономия" - это не просто аудиокнига, а возможность расширить свои знания о космосе и поразиться его величию. Погрузитесь в увлекательное путешествие по звездам и планетам вместе с Яковом Перельманом!
Шрифт:
Интервал:
Закладка:
Сейчас выведенным правилом воспользуемся для решения любопытной задачи из области мифологии. Древнегреческий миф о Вулкане повествует, между прочим, что этот бог уронил однажды свою наковальню, и она падала с неба целых 9 дней, прежде чем долетела до Земли. По мнению древних, срок этот отвечает представлению о невообразимой высоте небес, где обитают боги; ведь с вершины Хеопсовой пирамиды наковальня долетела бы до Земли всего в 5 секунд!
Нетрудно, однако, вычислить, что вселенная древних греков, если измерять ее по этому признаку, была бы, по нашим понятиям, довольно тесновата.
Мы уже знаем, что Луна падала бы на Землю в течение 5 дней, мифическая же наковальня падала 9 дней. Значит, «небо», с которого упала наковальня, находится дальше лунной орбиты. На много ли дальше? Если умножим 9 дней на – √32, мы узнаем величину того периода, в течение которого наковальня обращалась бы вокруг земного шара, будь она спутником нашей планеты: 9 х 5,6 = 51 суткам. Применим теперь к Луне и к нашему воображаемому спутнику-наковальне третий закон Кеплера.
Составим пропорцию
Подставив числа, имеем
Отсюда неизвестное расстояние наковальни от Земли нетрудно вычислить:
Вычисление дает следующий результат: 580 000 км. Итак, вот как мизерно было на взгляд современного астронома расстояние до неба древних греков: всего в полтора раза больше расстояния до Луны. Мир древних кончался примерно там, где, по нашим представлениям, он только начинается.
Границы солнечной системыТретий закон Кеплера дает также возможность вычислить, насколько далеко должна быть отодвинута граница нашей солнечной системы, если считать крайними ее точками самые отдаленные концы (афелии) кометных орбит. Нам приходилось уже беседовать об этом раньше, здесь произведем соответствующий расчет. Мы упоминали в главе III о кометах, имеющих очень долгий период обращения: в 776 лет. Вычислим расстояние х афелия такой кометы, зная, что ближайшее ее расстояние от Солнца (перигелий) равно 1 800 000 км.
Привлекаем в качестве второго тела Землю и составляем пропорцию:
Отсюда
И, следовательно,
х = 25 318 000 000 км.
Мы видим, что рассматриваемые кометы должны уходить в 182 раза дальше от Солнца, чем Земля, и значит, в четыре с половиной раза дальше, чем последняя из известных нам планет – Плутон.
Ошибка в романе Жюля ВернаВымышленная комета «Галлия», на которую Жюль Берн перенес действие романа «Гектор Сервадак», совершает полный оборот вокруг Солнца ровно в два года. Другое указание, имеющееся в романе, относится к расстоянию афелия этой кометы: 820 миллионов км от Солнца. Хотя расстояние перигелия в романе не указано, мы по тем двум данным, какие сейчас приведены, уже вправе утверждать, что такой кометы в нашей солнечной системе быть не может. В этом убеждает нас расчет по формуле третьего закона Кеплера.
Обозначим неизвестное расстояние перигелия через х миллионов км. Большая ось орбиты кометы выразится тогда через х+820 миллионов км, а большая полуось через (х+820)/2 миллионов км. Сопоставляя период обращения и расстояние кометы с периодом и расстоянием Земли, имеем по закону Кеплера
откуда
х = -343.
Отрицательный результат для величины ближайшего расстояния кометы от Солнца указывает на несогласованность исходных данных задачи. Другими словами, комета со столь коротким периодом обращения – 2 года – не могла бы уходить от Солнца так далеко, как указано в романе Жюля Верна.
Как взвесили Землю?Существует анекдотический рассказ про наивного человека, которого всего более удивляло в астрономии то, что ученые узнали, как звезды называются. Если говорить серьезно, то наиболее удивительным достижением астрономов должно, вероятно, казаться то что им удалось взвесить и Землю, на которой мы живем, и далекие небесные светила. В самом деле: каким способом, на каких весах могли взвесить Землю и небо?
Рис. 87. На каких весах могли взвесить Землю?
Начнем со взвешивания Земли. Прежде всего отдадим себе отчет, что следует понимать под словами «вес земного шара». Весом тела мы называем давление, которое оно оказывает на свою опору, или натяжение, которое оно производит на точку привеса. Ни то, ни другое к земному шару неприменимо: Земля ни на что не опирается, ни к чему не привешена. Значит, в таком смысле земной шар не имеет веса. Что же определили ученые, «взвесив» Землю? Они определили ее массу. В сущности, когда мы просим отвесить нам в лавке 1 кг сахара, нас нисколько ведь не интересует сила, с какой этот сахар давит на опору или натягивает нить привеса. В сахаре нас интересует другое: мы думаем лишь о том, сколько стаканов чая можно с ним выпить, другими словами, нас интересует количество заключающегося в нем вещества.
Но для измерения количества вещества существует только один способ: найти, с какой силой тело притягивается Землей. Мы принимаем, что равным массам отвечают равные количества вещества, а о массе тела судим только по силе его притяжения, так как притяжение пропорционально массе.
Переходя к весу Земли, мы скажем, что «вес» ее определится, если станет известна ее масса; итак, задачу определения веса Земли надо понимать как задачу исчисления ее массы.
Рис. 88. Один из способов определения массы Земли: весы Йолли
Опишем один из способов ее решения (способ Йолли, 1871). На рис. 88 вы видите очень чувствительные чашечные весы, в которых к каждому концу коромысла подвешены две легкие чашки: верхняя и нижняя. Расстояние от верхней до нижней 20–25 см. На правую нижнюю чашку кладем сферический груз массой mv Для равновесия на левую верхнюю чашку положим груз тт Эти грузы не равны, так как, находясь на разной высоте, они с разной силой притягиваются Землей. Если под правую нижнюю чашку подвести большой свинцовый шар с массой М, то равновесие весов нарушится, так как масса ml будет притягиваться массой свинцового шара М с силой Fv пропорциональной произведению этих масс и обратно пропорциональной квадрату расстояния d, разделяющего их центры:
где к – так называемая постоянная тяготения.
Чтобы восстановить нарушенное равновесие, положим на верхнюю левую чашку весов малый груз массой п. Сила, с которой он давит на чашку весов, равна его весу, т. е. равна силе притяжения этого груза массой всей Земли. Эта сила F равна
Пренебрегая тем ничтожным влиянием, которое присутствие свинцового шара оказывает на грузы, лежащие на верхней левой чашке, мы можем написать условие равновесия в следующем виде:
В этом соотношении все величины, кроме массы Земли
, могут быть измерены. Отсюда определим
В тех опытах, о которых говорилось, М= 5775,2 кг, R = 6366 км, d = 56,86 см, m1 = 5,00 кг и п = 589 мг.
В итоге масса Земли оказывается равной 6,15 х 1027 г.
Современное определение массы Земли, основанное на большом ряде измерений, дает
= 5,974 х 1027г, т. е. около 6 тысяч триллионов тонн. Возможная ошибка определения этой величины не более 0,1 %.
Итак, астрономы определили массу земного шара. Мы имеем полное право сказать, что они взвесили Землю, потому что всякий раз, когда мы взвешиваем тело на рычажных весах, мы, в сущности, определяем не в е с его, не силу, с какой оно притягивается Землей, а массу: мы устанавливаем лишь, что масса тела равна массе гирь.
Из чего состоят недра Земли?Здесь уместно отметить ошибку, которую приходится встречать в популярных книгах и статьях. Стремясь упростить изложение, авторы представляют дело взвешивания Земли так: ученые измерили средний вес 1 см3 нашей планеты (т. е. ее удельный вес) и, вычислив геометрически ее объем, определили вес Земли умножением ее удельного веса на объем. Указываемый путь, однако, неосуществим: нельзя непосредственно измерить удельный вес Земли, так как нам доступна только сравнительно тонкая наружная ее оболочка[49] и ничего не известно о том, из каких веществ состоит остальная, значительно большая часть ее объема.
Мы уже знаем, что дело происходило какраз наоборот: определение массы земного шара предшествовало определению его средней плотности. Она оказалась равной 5,5 г на 1 см3 – гораздо больше, чем средняя плотность пород, составляющих земную кору. Это указывает на то, что в глубине земного шара залегают очень тяжелые вещества. По их предполагаемому удельному весу (а также и по другим основаниям) раньше думали, что ядро нашей планеты состоит из ж е л е з а, сильно уплотненного давлением вышележащих масс. Сейчас считают, что в общем центральные области Земли не отличаются по составу от коры, но плотность их больше вследствие огромного давления.
- Занимательная физика. Книга 2 - Перельман Яков Исидорович - Учебная литература
- Циолковский. Его жизнь, изобретения и научные труды. - Яков Исидорович Перельман - Биографии и Мемуары
- Секретная цивилизация Луны - Игорь Осовин - Военная история
- Ориентировка по звездам - Николай Кондратьев - Науки о космосе
- Занимательная стандартизация - Вадим Белоусов - Детская образовательная литература