НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла
0/0

НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла

Уважаемые читатели!
Тут можно читать бесплатно НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла. Жанр: Прочее. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла:
Читем онлайн НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 29 30 31 32 33 34 35 36 37 ... 138

Конечно, для того, чтобы получить накал тела, помещенного в лампу, нет необходимости использовать такой ток, при котором тело становится электропроводным, и даже совершенно неэлектропроводное тело могло бы легко нагреваться. Для этой цели, достаточно окружить электропроводный электрод диэлектриком, таким как в лампе, описанной выше на рис. 21. В ней тонкая нить накаливания лампы покрыта неэлектропроводным материалом и поддерживает наверху электрод, изготовленный из такого же самого материала. Сначала бомбардировка поддерживается индуктивным воздействием через диэлектрик, и продолжается до тех пор, пока он не нагреется до такой степени, что станет электропроводным, и тогда бомбардировка продолжается обычным способом.

На Рис. 23 представлены компоновки элементов ламп раз- личных конструкций. В данном случае диэлектрик M встроен в часть обычной легкой угольной дуги так, что он находится чуть выше последней. Угольный элемент соединен с внутренним проводом, проходящим через стеклянную ножку, которая покрыта несколькими слоями слюды. Обычно для экранирования используется алюминиевая трубка a. Она расположена таким об- разом, что выступает вверх почти на такую же высоту, что и угольный элемент, и только диэ- лектрический элемент т чуть-чуть возвышается над ней. Сначала происходит бомбардировка верхней части угля, поскольку нижняя часть защищена алюминиевой трубкой. Однако, как только диэлектрик т нагревается до такой степени, что обретает хорошую электропроводность, центром бомбардировки становится именно он.

Во время этих экспериментов я сконструировал множество таких однопроводных ламп с внутренним электродом, или без него, в которых излучающее вещество размещалось напротив или над телом, подлежащим накаливанию. На Рис. 24. показана одна из таких ламп. Она состоит из колбы L, снабженной длинной шейкой n, в верхней части лампы, которая служит для того, чтобы в некоторых усиливать действие лампы посредством подключения к внешнему электропроводному покрытию. В нижней части колбы L имеется небольшое утолщение b, которое служит для прочного крепления колбы в гнезде S, сделанного из изолирующего материала. Лампу закрепляется в гнезде при помощи цементирующего материала. Тонкая нить накаливания f лампы, закрепленная на проводе W, проходит через центр колбы L. Нить накаливания подвергается нагреву в средней части, там, где бомбардировка, происходящая с нижней внутренней поверхности сферы, наиболее интенсивна. Нижняя часть колбы, примерно до уровня возвышения гнезда делается токопроводящей путем нанесения на нее фольги, или иным образом, а внешний электрод подключается к клемме катушки.

Способ подключения элементов, схематически изображенный на Рис. 24, был признан не самым лучшим для того, чтобы вызвать накал у нити накаливая, или электрода, расположенно- го в центре сферы, однако он достаточно удобен для того, чтобы вызвать свечение объекта.

Во время проведения множества экспериментов, где тела разных типов встраивались в лампу, как, например, на Рис. 23, были сделаны интересные наблюдения.

В частности, обнаружилось, что в таких случаях, независимо от того, где начиналась бом- бардировка, как только достигалась высокая температура, обычно выявлялось одно из тел, ко- торое принимало на себя основную мощь бомбардировки, тем самым освобождая от нее другое, или другие тела. Это качество принципиально зависит от точки плавления и от легкости, с ко- торой тело "испаряется" или, говоря вообще, расщепляется. Значение последнего термина за- ключается не только в испускании атомов, но и более крупных частей тела. Результаты этого научного наблюдение соответствовали общепринятым представлениям. В лампе с сильным раз- режением газа, электричество уносится с электрода независимыми носителями: частично ато- мами или молекулам оставшегося в сосуде воздуха, и частично атомами и молекулами электрода. Если электрод сделан из тел с различными характеристиками и одно из них расщеп- ляется легче, чем остальные, то большая часть потребляемого электричества улетучивается именно через тело, которое быстрее остальных достигает высокой температуры. Более того, при увеличении температуры это тело по-прежнему будет легче расщепляться, чем остальные.

Мне представляется весьма вероятным, что похожие процессы могут иметь место в лампе даже с однородным электродом, и они являются главной причиной расщепления тел. Они име- ют некоторое отношение к неровностям поверхности, даже если поверхность электрода под- вергнута самой тщательной полировке. Разумеется, такой операции невозможно подвергнуть большинство тел из тугоплавкого материала, используемых в качестве электродов. Допустим, что какая либо точка электрода горячее, чем другие. Тогда немедленно большинство разрядов начинает проходить через эту точку, и через несколько минут этот участок тела плавится и ис- паряется.

Теперь уже стало возможным, чтобы вследствие интенсивного расщепления тело поглощало бы температуру, либо вырабатывало противодействующую силу, так, как это происходит в дуге. В любом случае, локальный отрыв как недостаток, наряду с другими ограничениями, находится в допустимых пределах погрешностей, присущих данному эксперименту. Если отрыв все же происходит, то через некоторое время весь процесс возникает в другом месте. Невооруженному глазу электрод кажется одинаково гладким и блестящим, но вокруг него имеются точки в которых температура значительно выше той, что на его поверхности. Эти точки находятся в постоянном движении и сильно ускоряют процесс износа электрода. То, что подобное происходит, по крайней мере, тогда, когда электрод находится в условиях низкой температуры, можно подтвердить следующим экспериментом. В лампе создается очень сильный вакуум, такой, что при достаточно большой разности потенциалов разряд не происходит — по крайней мере, его не видно, так как, по всей вероятности, слабый невидимый разряд возникает постоянно. Теперь медленно и осторожно увеличиваем разность потенциалов, пустив первичный ток, но не более чем на мгновение. В определенной момент времени на сфере появятся одна, две или полдюжины светящихся точек. Очевидно, что эти места подверглись более интенсивной бомбардировке, чем остальные. Это является следствием неравномерно распределенной электрической плотности, вызванной неоднородностью формы или, говоря вообще, неровной поверхностью электрода. Но светящиеся места постоянно меняют свое положение, и это хорошо заметно если на поверхности лампы их очень мало. Это указывает на то, что структура электрода быстро изменяется.

Из опытов этого типа я сделал вывод, что для того, чтобы быть более прочной, тугоплавкий электрод в лампе должен иметь форму сферы и очень хорошо отполированную поверхность. Такую маленькую сферу можно изготовить из алмаза, или из некоторых других видов кристаллов, но лучше всего в условиях чрезвычайно высоких температур, которые можно достичь с помощью некоторых оксидов — таких как, например, оксид циркония — изготовить маленькую каплю, а затем поместить ее внутрь лампы при температуре, чуть ниже ее точки плавления. Несомненно, что при проведении исследований в направлении сверхвысоких температур могут быть получены очень полезные результаты. Но как можно достичь столь высокой температуры нагрева? Как в природе происходит сильное нагревание? Под воздействием звезд, при помощи высоких скоростей и в результате столкновений. При столкновении может быть достигнута любая степень нагревания. В химическом процессе мы ограничены. Когда кислород и водород соединяются, то они, образно говоря, падают с определенной высоты. Мы не можем подойти близко к взрыву, как и не можем удержать тепло в печи, но в разреженной лампе на маленьком участке мы можем сконцентрировать любое количество энергии. Таким образом, если опустить вопросы, связанные с возможностью практического достижения этих целей, то по-моему, это должно быть средство, при помощи которого мы могли бы добиться высокой температуры. Но, на практике мы сталкиваемся с большой проблемой, которая заключается в том, что в большинстве случаев вещество разрушается быстрее, чем оно может расплавиться и принять форму капли. Это особенно типично для оксидов, таких как оксид циркония, из которого невозможно сделать твердый кусок так, чтобы он быстро не разрушался. Я многократно пытался расплавить цирконий, помещая его в чашу или в углеродную дуговую лампу так, как это показано на рис. 23. Он светился с большой интенсивностью, а поток частиц, выбрасываемых им из углеродной чаши, имел ярко-белый цвет, но вне зависимости от того, был ли он в форме твердого кусочка, или в виде пасты с углем, он разрушался раньше, чем успевал расплавлялся. Я вынужден был поместить углеродную чашу с цирконием очень низко в шейку большой лампы, поскольку нагревание лампы от вылетающих частичек оксида было настолько быстрым, что при первом испытании лампа треснула практически через мгновение после того, как включили ток. Обнаружилось, что при нагревании стекла вылетающими частицами, нагрев происходит намного быстрее, если в угольную чашу поместить быстро разрушающееся вещество. Я предполагаю, что в этих случаях, при том же самом напряжении, достигается более высокая скорость частиц, и поэтому, в единицу времени испускается большее количество вещества, следовательно, больше частиц воздействует на стекло.

1 ... 29 30 31 32 33 34 35 36 37 ... 138
На этой странице вы можете бесплатно читать книгу НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - Никола Тесла бесплатно.

Оставить комментарий

Рейтинговые книги