Хаос и структура - Алексей Лосев
0/0

Хаос и структура - Алексей Лосев

Уважаемые читатели!
Тут можно читать бесплатно Хаос и структура - Алексей Лосев. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Хаос и структура - Алексей Лосев:
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
Читем онлайн Хаос и структура - Алексей Лосев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 92 93 94 95 96 97 98 99 100 ... 219

Одна структура — это арифметическая едино–раздель–ность; тут свое понимание[98] «большего», «меньшего» и «равного», а именно, эти понятия даны едино–раздельно, стабильно. Совсем другая структура—инфинитези–мальное становление; другое здесь и понимание «больше», «меньше» и «равняется», а именно, тут самые эти понятия даны в становлении, в текучести, поэтому и самые операции в анализе бесконечно–малых совсем другие. Как ясно из предыдущего исследования понятия трансфинитного числа и континуума, также и здесь свое собственное понимание этих >, < и =. Поэтому нельзя говорить, что бесконечное больше конечного, если само «больше» в бесконечном и конечном разное.

Можно сказать еще и так. Конечное и многочисленные виды бесконечного не есть различие предметное, бытийственное, но — чисто смысловое, а именно, вырази–тельно–смысловое. С точки зрения онтологической предметности о бытии с одинаковым правом можно сказать и что оно конечное, и что оно бесконечное, и что оно континуальное, сплошное. Можно сказать, что существует только конечное, а бесконечность и континуум есть его виды (хотя тут надо было бы проанализировать, что значит «вид»[99] Можно сказать, что существует только бесконечное, а конечное и континуум есть его виды. Можно сказать, что существует только континуум, а конечное и бесконечное есть его виды. Везде тут по–разному придется понимать термин «вид», но, не вникая в подробности, можно с некоторым грубоватым, но вполне реалистическим добродушием сказать, что одно тут «подчинено» другому и что каждая из этих категорий вполне «выводима» из другой. В одном случае «выведение» есть заполнение фона, в другом оно есть выделение и вырезывание на некоем фоне. Но зато уже ни при каком реализме недопустим ни мещанский субъективизм Брауэра и Бэра, ни рационалистическая импотенция Бореля и Лебега. Только «демон» Цермело немного высовывает свою голову из этого мещанского болота мелкого субъективизма, да и тут способен только беспомощно выставить правильный тезис, будучи не в силах претворить его в живую действительность.

§ 73. Аксиома выражения в теории вероятностей.

Наконец, необходимо дать не подробную, но все же принципиально определенную установку для дедукции выразительной сферы и в области теории вероятностей. Ограничимся самым необходимым.

1. а) Выражение есть внешность, по которой узнается внутреннее. До сих пор (§ 49, 53, 57, 61.4, 62.5, 63.7) мы находили в теории вероятностей только такие категории, о которых нельзя было сказать, внутренние они или внешние. Самое это различие впервые зарождается там, где полагается различие факта и смысла, т. е. на ступени наличного бытия. Дальнейшее уже будет смыслом факта, т. е. чем–то внешним, поскольку и факт есть внешнее в сравнении с тем внутренним, которым теперь оказывается чистый, т. е. до–фактный, смысл. Раньше мы находили в теории вероятностей отдельные операции над вероятностями (§ 62.5) и закон больших чисел (§ 63.7). Необходимо, следовательно, подчинить эти операции и это применение закона больших чисел таким новым преобразованиям, которые бы превратили их в то, что, будучи по существу внутренним, теперь сорганизовалось заново и потому стало внешним.

b) Наиболее яркую форму этого теоретико–вероятностного выражения надо находить в учении о законе нормального распределения вероятностей и вообще в теории построения нормальных и уклоняющихся от нормы кривых распределения. Здесь, во–первых, сначала имеются в виду вообще теоретико–вероятностные операции, так как тут наличен целый ряд вероятностей, так или иначе получаемых из опыта или теории, и также — закон больших чисел, потому что здесь ставится вопрос, какою функцией является вероятность, когда по мере возрастания количества событий сглаживаются случайные уклонения отдельных событий от их математических ожиданий. Однако это еще не все. Именно, во–вторых, здесь разыскивается закон распределения вероятностей, т.е. здесь самое исчисление вероятностей является чем–то отвлеченным, внутренним, получающим внешнюю конкретность от нового оформления. Следовательно, и здесь аксиому выражения необходимо формулировать как утверждение тождества внутренно–внешних направлений становления для исчисления вероятностей.

Мы не будем анализировать ни предельных теорем Лапласа, А. М. Ляпунова и А. А. Маркова, ни закона (Гаусса) нормального распределения вероятностей, ограничиваясь только их общей диалектической установкой. Но ясно, что тут мы находимся в сфере теоретико–вероятностного выражения[100] — уже по одному тому, что оперируем с кривыми, которые всегда есть выражение в отношении аналитических данных. Но тут, кроме того, исследуется становление вероятностей, определенным образом сконструированное, а именно путем выключения всяких случайных уклонений, т. е. путем выявления чисто смысловой стороны становления. А сконструированное таким смысловым образом становление всегда есть выразительная форма.

2. Но в предыдущих параграфах мы констатировали разные диалектические типы выразительной измеримости. Арифметика дала нам разные типы преобразований, которые в геометрии соответствуют разным типам пространства. Если даже и не входить в подробности, то нельзя ли дать хотя бы общую установку для такого понимания вероятности, которое можно было бы назвать неэвклидовским? Да, такая методологическая позиция уже давно намечена в науке, и в настоящее время она обросла солидным математическим аппаратом. Я имею в виду основные факты т. н. волновой механики.

В чем тут дело? Придется на минуту отклониться в сторону, чтобы наше утверждение о «неэвклидовости» вероятности стало более или менее понятным[101].

a) В истории учения о свете известны две большие теории, связанные с именами Ньютона и Гюйгенса. Ньютона считают создателем корпускулярной теории света, по которой светящееся тело испускает из себя частицы, движущиеся в пустом пространстве наподобие самых обыкновенных материальных частиц, т. е. прямолинейно и равномерно, если отсутствует влияние всякой посторонней силы. Эта теория довольно удачно объясняла явления отражения и преломления, но она оказалась совершенно непригодной для объяснения интерференции и дифракции. Волновая теория, основателем которой считают Гюйгенса, рассматривала скорость света как волновую скорость. Работы Физо и Френеля, казалось, окончательно утвердили господство волновой теории. Знаменитая электромагнитная теория света у Максвелла вполне стояла на точке зрения светового эфира Пойгенса, механические колебания которого и понимались как свет.

b) Однако эта теория наткнулась на большое препятствие, создавшееся благодаря формулированному в 1905 г. «принципу относительности». Если кратко сказать, то этот знаменитый принцип основывается на такой последовательности идей. 1) Исходный пункт: отрицается абсолютность, т. е. повсеместная однородность и неподвижность пространства. 2) Отсюда вытекает невозможность ориентировать абсолютное движение относительно пространства, т. е. невозможность вообще определить абсолютное движение. Получается, что можно говорить только об относительном движении. 3) Но это значит, что невозможно судить и о тех абсолютных изменениях скорости света, которые она претерпевает в связи с прохождением света через те или иные подвижные системы. Скорость света признается всегда постоянной, так что есть как бы некая математическая бесконечность, которая не увеличивается и не уменьшается от прибавления или отнимания никаких конечных количеств. Это подтвердилось и экспериментально (опыты Майкельсона, Морли и др.). 4) Постоянство скорости света вместе с ориентацией на нее всех реальных скоростей приводит к учению о сокращении тел в направлении движения с точки зрения неподвижной системы, причем это сокращение выражается простейшим образом с помощью т. н. Лоренцовых преобразований. 5) Геометрическое толкование этих процессов приводит к выводу за пределы Эвклидового пространства, так как вытекающая отсюда кривизна пространства уже не может равняться нулю. 6) Получающееся пространство по этому самому уже не вмещается в обычные три измерения, и обычные трехмерные векторные величины становятся четырехмерными векторами, причем четвертое измерение может быть рассматриваемо как результат движения, т. е. времени.

Вот эта–то релятивистская теория света и оказалась несовместимой с ньютоновским механическим атомизмом (хотя старые уравнения электромагнитной теории вполне совместимы с постоянством скорости света).

с) Но корпускулярная теория Ньютона в эти же самые годы получила неожиданное подкрепление, которое, впрочем, фактически еще дальше уводило от Ньютона к сближению с волновой теорией, но уже в новом понимании. Это подкрепление было создано квантовой теорией. Незадолго до работы Эйнштейна 1905 г. Планк, желая объяснить распределение интенсивности в спектре теплового излучения, предположил, что атом и испускает, и поглощает лучистую энергию скачкообразно, т. е. отдельными порциями, или квантами, энергии. При этом оказалось, что квант энергии связан с частотой колебания излучения, и связан очень определенным образом, а именно

1 ... 92 93 94 95 96 97 98 99 100 ... 219
На этой странице вы можете бесплатно читать книгу Хаос и структура - Алексей Лосев бесплатно.

Оставить комментарий

Рейтинговые книги