Хаос и структура - Алексей Лосев
0/0

Хаос и структура - Алексей Лосев

Уважаемые читатели!
Тут можно читать бесплатно Хаос и структура - Алексей Лосев. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Хаос и структура - Алексей Лосев:
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
Читем онлайн Хаос и структура - Алексей Лосев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 88 89 90 91 92 93 94 95 96 ... 219

О Однако и здесь мы еще не получаем полного континуума. Дело в том, что если первый полный акт воплощения трансфинитности дал нам вместо ω стихию ωω, то, получая вместо ωω еще новую бездну точек ωω мы образуем не что иное, как другой, второй полный акт воплощения, когда воплощается уже не ω, но ωω. Но почему же мы должны остановиться на этом втором акте воплощения? Как там было недостаточно ω2, потому что оно не исчерпывало всей бесконечности, так и здесь недостаточно ωω< потому что оно не исчерпывает всей бесконечности воплощений. Чтобы пройти от 1 до ω, нужна бесконечность актов полагания или идеальных различений. Чтобы пройти от ω до ωω, нужна бесконечность реальных полаганий всей бесконечности, чтобы получилась одна воплощенная бесконечность. Наконец, чтобы охватить бесконечность самих воплощений бесконечности, нужен переход от ωω к ωω» .

III. Третье воплощение.

ωω», ωω* , ωω» " = Ω

Это третье воплощение есть, таким образом, только окончательное выполнение принципов d и е из п. 7f.

9. а) Чтобы понять, что результатом третьего воплощения является континуум, надо самым четким образом представлять себе наш общелогический анализ континуума в п. 7f, а чтобы реально воспользоваться этим анализом, необходимо было яснейшим образом представлять себе диалектику самого трансфинитного числа. Кто не понимает ω, тот не поймет и континуума; и непонятность континуума есть, в основе своей, непонятность числа ω.

Именно, надо раз навсегда себе запомнить, что если бесконечность есть действительно бесконечность, т. е. охватывает все, то ничто конечное не может в ней изменить ни одной ноты. Бесконечность есть нечто абсолютно неуменьшаемое и неувеличиваемое, нечто абсолютно неделимое. Если думать, что ω действительно составлено из конечных чисел и может быть на них сведено, то это колоссальное недоразумение, которое является препятствием ко всякому пониманию этого ω. Никакими процессами нельзя из конечного получить бесконечное, и никакими процессами нельзя уже имеющуюся бесконечность как–нибудь изменить. Это запомним раз навсегда. Наше трансфинитное число ω, эта актуальная бесконечность, есть только одна неделимая точка, и больше ничего. Его нельзя дробить так же, как нельзя раздробить точку; в этом смысле оно лишено всяких «измерений».

Если это хорошенько себе усвоить, тогда отпадает значительная часть и трудностей, связанных с пониманием континуума, ибо одно из основных возражений против учения о континууме заключается в том, что невозможно его представить себе составленным из точек. Совершенно правильно, что континуум не состоит ни из каких точек, а есть абсолютная сплошность. Но это происходит здесь — принципиально—точно так, как и в простом трансфинитном числе. Как простое ω есть некая неделимая сплошность, несмотря на наличие в нем всей бесконечности чисел натурального ряда, так и континуум ничто не мешает понимать как некую неделимую сплошность, несмотря на бездну точек, из которых он составляется. Если понятно, что такое ω, то понятно и чго такое континуум. И если не понятен континуум, то уже рушится и самое первое трансфинитное число.

Следовательно, весь вопрос заключается не в том, как получить континуум из точек (это общая проблема всякой трансфинигносги), но в том, чем отличается получение континуума из точек [от] получения первого трансфинитного числа из точек.

Будем считать, что это для нас ясно. Если же мы поставим этот последний вопрос, то тут мы столкнемся еще с одной интуицией, которая, если ее взять саму по себе, опять–таки не есть что–нибудь специфическое для континуума, но это такая интуиция, без которой нечего и думать овладеть континуумом как логической идеей. Это интуиция алогического становления. В предыдущем (п. 7а — d) она была изображена достаточно, но мы лак же, как и в проблеме трансфинитной сплошности, укажем сейчас самый основной корень ее, как он необходим для континуума.

b) Корень этот заключается в утверждении слепой мощи созидания, наличной в бытии с той же необходимостью, что и координированно–раздельный эйдос. Только этим становление и отличается от эйдоса, будучи во всех прочих отношениях прямым его повторением. В эйдосе каждый момент отличен один от другого, и в становлении— го же самое (ибо иначе оно и не становилось бы); в эйдосе каждый момент тождествен с другим, и в становлении— то же (ибо иначе оно не было бы сплошностью); в эйдосе каждый момент переходит в другой и останавливается в нем, и в становлении — то же (ибо иначе оно не развертывалось бы последовательно); наконец, эйдос полагает сам себя целиком и ни от чего другого не зависит, и становление — то же (ибо иначе в нем выделялись бы отдельные более активные пункты и оно не было бы безразлично–самостоятельным бытием). Но все эти моменты, повторяющие эйдос, отмечены в становлении одним неизгладимым свойством: оно есть слепая мощь созидания всех этих моментов. Поэтому и самотождественное различие, и подвижной покой, и определенное бытие эйдоса даны здесь как слепые сдвиги, как неопределенная длительность без начала, без конца, да и без середины. Каждый отдельный момент становления никогда не есть он сам, но он сплывает[90] в самый [момент] своего полагания, превращаясь в скользящую тьму неизвестно чего.

И если бы мы захотели двигаться вообще по ровному полю становления, то мы должны были бы заметить, что каждый такой сдвиг, получившийся в результате полагания точки, тотчас же воплощается в новом сдвиге, подобно тому как сам он только что появился из одной идеальной точки, этот сдвиг — еще в новый и т. д. В результате же получается, что в становлении каждая точка не покоится, но тяготеет к другой точке, и притом ко всякой другой точке. Она — центр притяжения всех прочих точек, сколько бы их ни было, а сама она в числе прочих тоже тяготеет ко всем прочим. Таким только образом и можно схватить сущность становления.

с) Если мы овладели этими двумя интуициями — неразложимостью бесконечного и слепым самосозиданием становления, то это будет и овладением идеей самого континуума. Ведь мы же исходим как раз из того, что континуум есть алогическое становление, данное как актуальная бесконечность. Следовательно, чтобы осуществить вышеизложенные интуитивные принципы, 1) надо взять ω, но 2) в этом ω считать не 1, 2, 3… (что было бы только идеально–числовым различением, а не вне–числовым созиданием и воплощением), но считать так, чтобы вместо каждой единицы была упомянутая выше неопределенная длительность, 3) а вместо последовательного прибавления по единице — последовательное воплощение одной длительности в другую. Так как мы уже доказали (п. 8b), что первой «точкой», или первым воплощением, трансфинитного эйдоса является ωω, то ясно, почему исчерпание [м ] всех бесконечных последовательных возведений ωω в соответствующие степени мы и получаем настоящий континуум.

Надо каждый момент ω понять как алогически становящийся, или, что то же, каждый момент алогического становления понять как трансфинитный, ибо эта взаимо–пронизанность алогического становления и трансфинитного и есть, как сказано, алогическое становление как идеальный предмет.

При этом выясняется и роль последовательных возведений [в] степень. Ведь континуум должен обеспечить нам некоторый трансфинитный рост без разрыва всех моментов роста. Это делается так, что мы имеем сначала один алогический сдвиг, знаменующий первое воплощение трансфинитного, потом воплощение не просто прежнего трансфинитного числа, но воплощение происшедшего сдвига, затем опять не воплощение старого трансфинитного числа, но воплощение этого второго сдвига и т. д. и т. д. При таком росте трансфинитности мы, переходя ко всякому дальнейшему воплощению, имеем в виду все воплощения, бывшие до сих пор, вместе с этим новым, не различая уже нового сдвига от старого. Таким образом, мы все время плывем вперед и вперед, повторяя эти воплощения в каждый момент своего плытия, но самих этих моментов как раздельных не замечаем. Эта же раздельность, которая тут необходимо предполагается, относится не к нашему плытию, но к тому трансфинитному числу ω, которое является единственным основным субъектом всех этих воплощений, а по методу происхождения которого из бесконечности (т. е. путем предельного прыжка) мы и судим здесь о получающемся континууме.

d) Таким образом, континуум есть бесконечное число раз повторенное или, лучше сказать, бесконечно напряженное становление. И это так и должно быть, если мы вспомним, как вообще одна диалектическая категория происходит из другой. В этом сочинении мы не раз пользуемся примером движения и покоя. Эти категории суть взаимное отрицание. Но если мы представим себе, что движение происходит с бесконечной скоростью, то оно сразу, в одно мгновение охватит все точки бесконечности, какие только имеются; и раз ему поэтому некуда будет больше двигаться, оно превратится в абсолютный всеобщий покой. Точно то же самое происходит и с алогическим становлением. Покамест оно взято как такое, в чистом виде, оно есть отрицание эйдоса, смысла, едино–раздельности. Но возьмем его в максимальном напряжении, с бесконечной, так сказать, скоростью распространения. В таком случае оно охватит все точки бесконечности, т. е. всю бесконечность, в одно мгновение. Каждое мгновение бесконечности оказывается алогическим становлением, так как оно отныне решительно всюду как таковое, во всякой точке бесконечности со своим неизменным и абсолютным алогизмом. По этому самому оно не имеет и никакого начала и конца: всякое начало и конец алогично становится, и потому, строго говоря, континиум не имеет ни первого, ни последнего элемента. Однако раз охвачена вся бесконечность, а это ω мы получили раньше как нечто устойчивое и неделимое, то и наше становление переходит тут в свое отрицание; оно здесь как бы останавливается и превращается в расчленяемую, едино–раздельную идею. Это как раз и есть континуум. Мы его можем дробить как угодно и создавать из него какую угодно едино–раздельность, но мы прекрасно чувствуем, что это вовсе не та едино–раздельность, которая есть в конечном, да и не то единство, которое есть в трансфинитном. Хватая отдельные точки этой «едино–раздельности», т. е. фиксируя их на манер конечных элементов, мы сразу видим, как они выскальзывают из наших пальцев и ползут во все стороны. Это и значит, что континуум есть бесконечно напряженное становление и нельзя в нем отмечать никакие конечные моменты, — подобно тому как и смысл, идея есть бесконечно напряженные инобытие и факт. Инобытие есть бесконечно размытое становление эйдоса, а эйдос есть бесконечно сомкнутое восстановление инобытия. Не иначе и в том случае, когда эйдос есть трансфинитное число, а инобытие есть чистое алогическое становление.

1 ... 88 89 90 91 92 93 94 95 96 ... 219
На этой странице вы можете бесплатно читать книгу Хаос и структура - Алексей Лосев бесплатно.

Оставить комментарий

Рейтинговые книги