Логическая игра - Кэрролл Льюис
0/0

Логическая игра - Кэрролл Льюис

Уважаемые читатели!
Тут можно читать бесплатно Логическая игра - Кэрролл Льюис. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Логическая игра - Кэрролл Льюис:
Автор «Алисы в стране чудес» был, как известно, математиком. В данной книге он описывает игру, которая позволяет графическим образом из двух суждений выводить третье, т.е. выражаясь терминами логики, решать силлогизмы.
Читем онлайн Логическая игра - Кэрролл Льюис

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 ... 15

13. Какие два частных суждения, взятые вместе, образуют суждение «Все x суть y»?

14. Какие суждения называются единичными? Приведите примеры.

15. Из каких суждений в нашей игре следует вывод о существовании их субъектов?

16. Если суждение содержит более двух признаков, то в некоторых случаях признаки можно переставлять и сдвигать от одного термина суждения к другому. В каких случаях это возможно? Приведите примеры.

Каждое из следующих четырех суждений разбейте на два частных суждения.

17. Все тигры свирепые.

18. Все сваренные вкрутую яйца неполезные.

19. Я счастлив.

20. Джона нет дома.

21. Сформулируйте правило, позволяющее указывать, какими признаками обладают предметы, находящиеся в любой из клеток большой диаграммы.

22. Объясните, что означают логические термины «посылки», «заключение» и «силлогизм». Приведите примеры.

23. Объясните, что означают выражения «средний термин» и «средние термины».

24. Почему при изображении суждений на большой диаграмме удобнее все начинать с отрицательных суждений и лишь затем переходить к утвердительным суждениям?

25. Почему для нас как для логиков несущественно, ложны или истинны посылки?

26. Как решать силлогизмы, в которых суждение «Некоторые x суть y» надлежит понимать в смысле «Признаки x и y совместимы», а суждение «Ни один x не есть y» – в смысле «Признаки x и y несовместимы»?

27. Какие два типа логических ошибок вы знаете?

28. Как обнаружить ошибку в посылках?

29. Как обнаружить ошибку в заключении?

30. В некоторых случаях предлагаемое нам другими лицами заключение не совпадает с правильным, и тем не менее его нельзя назвать ошибочным. В каких случаях это возможно? Как мы называем подобные заключения?

2. Суждения, представимые на половине малой диаграммы

На половине малой диаграммы

представьте с помощью черных и красных фишек следующие суждения.

1. Некоторые x суть не– y.

2. Все x суть не– y.

3. Некоторые x суть y, и некоторые x суть не– y.

4. Ни один x не существует.

5. Некоторые x существуют.

6. Ни один x не есть не– y.

7. Некоторые x суть не– y, и некоторые x существуют.

Пусть x=«судьи», y=«справедливые».

8. Ни один судья несправедлив.

9. Некоторые судьи несправедливы.

10. Все судьи справедливы.

Пусть x=«сливы», y=«полезные».

11. Некоторые сливы полезные.

12. Полезных слив не существует.

13. Некоторые сливы полезные, и некоторые сливы неполезные (вредны для здоровья).

14. Все сливы неполезные.

На половине малой диаграммы

изобразите следующие суждения.

Пусть y=«прилежные студенты», x=«учатся хорошо».

15. Ни один прилежный студент не учится плохо.

16. Все прилежные студенты учатся хорошо.

17. Ни один студент не прилежен.

18. Некоторые студенты прилежны, но плохо учатся.

19. Некоторые студенты прилежные.

3. Интерпретация фишек, расставленных на половине малой диаграммы

Объясните, что означают следующие символы.

1.

2.

3.

4.

x=«хорошие загадки»,

y=«трудные».

5.

6.

7.

8.

x=«омары»,

y=«эгоистичные».

9.

10.

11.

12.

y=«здоровые люди»,

x=«счастливые».

13.

14.

15.

16.

4. Суждения, представимые на малой диаграмме

1. Все y суть x.

2. Некоторые y суть не-x.

3. Ни один не-x не есть не-y.

4. Некоторые x суть не-y.

5. Некоторые не-y суть x.

6. Ни один не-x не есть y.

7. Некоторые не-x суть не-y.

8. Все не-x суть не-y.

9. Некоторые не-y существуют.

10. Ни один не-x не существует.

11. Некоторые y суть x, и некоторые y суть не-x.

12. Все x суть y, и все не-y есть не-x.

«Мир» – множество наций, x=«цивилизованные», y=«воинственные».

13. Ни одна нецивилизованная нация не воинственна.

14. Все невоинственные нации нецивилизованны.

15. Некоторые нации не воинственны.

16. Все воинственные нации цивилизованны, и все цивилизованные нации воинственны.

17. Ни одна нация не нецивилизована.

«Мир» – множество крокодилов, x=«голодные», y=«дружественно настроенные».

18. Все голодные крокодилы не настроены дружественно.

19. Ни один крокодил не настроен дружественно, когда он голоден.

20. Некоторые крокодилы, когда они не голодны, настроены дружественно, некоторые же – не дружественно.

21. Ни один крокодил не настроен дружественно, и некоторые крокодилы голодны.

22. Все крокодилы, когда они не голодны, настроены дружественно, и все не дружественно настроенные крокодилы голодны.

23. Некоторые голодные крокодилы настроены дружественно, и некоторые неголодные крокодилы не настроены дружественно.

5. Интерпретация фишек, расставленных на малой диаграмме

1.

2.

1 ... 4 5 6 7 8 9 10 11 12 ... 15
На этой странице вы можете бесплатно читать книгу Логическая игра - Кэрролл Льюис бесплатно.

Оставить комментарий

Рейтинговые книги