Хаос и структура - Алексей Лосев
0/0

Хаос и структура - Алексей Лосев

Уважаемые читатели!
Тут можно читать бесплатно Хаос и структура - Алексей Лосев. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Хаос и структура - Алексей Лосев:
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
Читем онлайн Хаос и структура - Алексей Лосев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 176 177 178 179 180 181 182 183 184 ... 219

Далее, инфинитезимальная область, как построенная согласно принципу числового становления, уже тем самым предполагает, что существуют и другие способы числового построения. И опять–таки только при том бессмысленном предположении, что, кроме инфини–тезимального построения числовой области, не существует никакого другого построения, можно было бы отвергать наш второй слой в изучаемых категориях. Раз есть инфинитезимальная структура, значит, есть и общечисловая структура. И она очень ощутительна, ибо только она отличает число от понятия. Число «равнодушно» к своему качественному заполнению. Оно предполагает только самые акты реальности без внимания к тому, что такое сама эта реальность. Система таких актов реальности и образует число, общечисловую структуру бытия и мышления. И это наш второй пункт. Отрицание его есть утверждение того, что, кроме инфинитезимальной числовой структуры, нет никакой другой числовой структуры и что она не есть только вид этой общечисловой структуры.

Наконец, невозможно отрицать и того, что сама общечисловая структура интеграла тоже есть только вид некоей еще более общей смысловой структуры. Отрицать это — значит утверждать, что всякое бытие только и есть числовое бытие и что всякое мышление только и есть числовое мышление. Чтобы избежать этой нелепости, приходится в глубине общечисловой структуры интеграла видеть еще общелогическую, общекатегориальную структуру. И она, оказывается, есть не что иное, как первичное логическое определение вообще, когда мы находим самое общее «нечто» в его «переходе» в «иное». Знать, что именно эта общелогическая структура лежит в основе интеграла, — это очень важно. Это возводит категорию интеграла к первичным логическим установкам вообще и делает его глубочайше укорененным и в мышлении, и в бытии. Это наш первый пункт.

Такие же—соответственно — пять слоев нетрудно наметить и в понятии производной, и в понятии дифференциала. В пятом слое они резко отличаются друг от друга. В четвертом — они уже неразличимы, но зато все вместе резко отличны от инфинитезимальной области в ее общности, будучи ее специфическим выражением. В третьем—они слиты с инфинитезимальной областью вообще, но зато все вместе резко отличаются от арифметической и трансфинитной области. Во втором—они сливаются с этими областями в одно неразличимое целое, но зато оказываются все вместе резко отличными от сферы общекатегориальной. И наконец, в первом своем слое они совпадают с общекатегориальной областью, с некоторыми первичными логическими категориями, дальше которых идти уже некуда. Дальше вообще логика (не говоря уже о математике) кончается и начинается само бытие, отражением которого и являются эти первичные логические установки.

12. Весь этот логический анализ трех категорий—дифференциала, производной и интеграла—есть, повторяем, только попытка, и попытка, далекая от всяких абсолютных претензий. Можно и должно возражать против нее по ее содержанию. Однако в логике недопустимо одно возражение, которое тем не менее обывателю приходит прежде всего на ум: «Это очень сложно! Это схоластика!» Дело в том, что простота и ясность жизненная, к сожалению, очень мало соответствуют простоте и ясности научной и логической. Казалось бы, какая это «простая и ясная» вещь — кривизна линии, кто же ее не понимает? Однако это обывательское представление о кривизне для математики и логики—только смутное понятие. И кому кажется, что тут и объяснять нечего, пусть он развернет учебник дифференциального исчисления и попробует разобраться в главе о кривизне. Без хорошей математической подготовки за курс средней школы он, можно сказать наперед, ровно ничего не поймет в этой главе. А кто ж не знает того, что такое кривизна! Все видели, как висит веревка, привязанная за оба конца. И тут тоже найдется немало таких противников схоластики, которые забракуют всякое расчленение такого «простого и ясного» факта. Но такое отношение к «простым и ясным» фактам есть реакционное мракобесие против науки, ибо ясно, что никакая житейская простота и ясность фактов не могут удержать математику от нового—научного—их разъяснения. И то, что эта прикрепленная в обоих концах веревка располагается по цепной линии, связанной с гиперболическим косинусом, это обстоятельство есть то, за что нужно только благодарить математиков и механиков.

Поэтому как бы «просты» ни были сами по себе эти операции дифференцирования и интегрирования (с ними знакомится уже студент–первокурсник), это нисколько не мешает их логической сложности. Можно даже выставить такое общее наблюдение: чем проще и яснее жизненное явление, тем труднее бывает его логически описать. Чего проще красный, синий, зеленый цвет! Но дать логическое их понятие очень трудно.

Однако нужно, конечно, согласиться с тем, что очень плоха та логика, которая только и остается в пределах сложных конструкций и не ведет к познанию жизненной простоты соответствующего явления. Наша логика и исходит из этой простоты, и кончает ею, оставляя за собой право пользоваться разными сложными конструкциями на пути от этой первой и наивной простоты к простоте последней и мудрой. Мы исходим из того, что мышление есть отражение материи, и на этом строим всю логику. Теперь, после разнообразных логических построений, мы опять приходим к действительности, но приходим обогащенные, уже вооруженные точными понятиями одной из точнейших человеческих наук. Мы приходим к жизненно–логическому значению основных категорий математического анализа.

13. ТРИ АСПЕКТА ТЕОРИИ БЕСКОНЕЧНО–МАЛЫХ В ПРИМЕНЕНИИ К ЛОГИКЕ

Если бросить общий взгляд на пройденный нами путь, то с точки зрения главнейших направлений в логике может быть справедливо указано, что у нас кое–что остается весьма слабо расчлененным, и прежде всего что у нас в отчетливой форме не проведено различение логики объемной, логики содержания и логики структурной. Несомненно, в нашей характеристике метода бесконечно–малых для логики мы использовали все эти три исторические системы логики. Однако до сих пор у нас не было повода производить в тщательной форме это различение и мы нерасч–лененно пользовались всеми тремя типами логики. Сейчас не мешает дать это в более точном и критическом освещении.

1. Несомненно, во всех наших рассуждениях о методе бесконечно–малых в логике мы стояли преимущественно на объемной точке зрения. Объясняется это тем, что к такой точке зрения математика особенно склонна; и это для нее вполне естественно ввиду количественной природы самой этой науки. Когда математики говорят о пределе и о стремлении к нему, то, конечно, они имеют в виду исключительно величины. К пределу приближается не что иное, как именно переменная величина. Наращение функции и аргумента мыслится здесь также в виде наращения величины. Это и заставило нас говорить прежде всего о родах и видах, когда мы захотели связать инфинитезимальные категории с логическими. Понятие у нас, вступая в становление, дробится, делится, и, конечно, делится прежде всего объемно. Производная есть принцип деления понятия, и деления прежде всего объемного: в результате возникают именно видовые различия и виды. Интегрирование ведет нас к общности, но опять–таки главным образом к родовой общности. Почти везде мы так и говорим: интеграл—родовая общность, производный принцип деления рода на виды, дифференциал — видовое различие.

Эта объемная интерпретация метода бесконечно–малых сама собой напрашивается при сравнении математического анализа с логикой; и, повторяем, она есть самый простой и самый естественный результат этого сравнения, поскольку математика есть не что иное, как именно чисто количественная дисциплина. Невозможно спорить против права объемной логики на существование; и то, что мы ею воспользовались при переводе инфинитезимальных категорий на язык логики, это само по себе не только не должно вызывать никаких сомнений, но во всех отношениях может только приветствоваться.

2. Однако, отдавши всяческую дань объемной логике, мы ни в каком случае не можем считать этот объемный аспект единственным и исключительным. В истории нашей науки было еще одно сильное направление — это т. н. логика содержания, правда, несравненно менее популярная, чем логика объемная, но, собственно говоря, менее популярная только по недоразумению, ибо ее логические ресурсы нисколько не менее значительны, а во многом даже заслуживают предпочтения. Применение метода бесконечно–малых в логике в целях построения логики содержания поэтому заслуживает всяческого внимания, и мы его кое–где проводили в предыдущем рассуждении, хотя и несравненно меньше, чем того оно заслуживало бы.

Под логикой содержания, конкретно говоря, надо подразумевать логику не объемов понятия, а признаков понятия. Если подойти к понятию с точки зрения его признаков и ограничить операции над ним операциями с его признаками, то получается ряд интересных построений, вступающих в резкий антагонизм с построениями объемными. Так, напр., суждение с точки зрения логики содержания приходится принимать не в виде включения подлежащего в объем сказуемого, но в виде включения сказуемого в содержание подлежащего. «Снег бел» — это значит не то, что «снег» включается в число белых предметов, но то, что признак белизны включается в число признаков «снега». С точки зрения объемной логики нельзя делать того заключения по четвертой фигуре силлогизма, которое было бы наиболее естественным: «Алмаз—углерод, углерод горюч; следовательно, алмаз горюч», в то время как с точки зрения логики содержания этот силлогизм вполне правилен, поскольку здесь мы находим только последовательную цепь признаков, вносимых в первоначальное понятие «алмаз». И т. д. и т. д. Словом, везде тут идет речь о возникновении и соединении признаков, об образовании ими понятия и о взаимоотношении понятий, рассматриваемых только лишь как совокупность признаков.

1 ... 176 177 178 179 180 181 182 183 184 ... 219
На этой странице вы можете бесплатно читать книгу Хаос и структура - Алексей Лосев бесплатно.

Оставить комментарий

Рейтинговые книги