Хаос и структура - Алексей Лосев
0/0

Хаос и структура - Алексей Лосев

Уважаемые читатели!
Тут можно читать бесплатно Хаос и структура - Алексей Лосев. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Хаос и структура - Алексей Лосев:
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
Читем онлайн Хаос и структура - Алексей Лосев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 175 176 177 178 179 180 181 182 183 ... 219

Мы опять–таки настаиваем на том, что теоретически совершенно не существует никакой разницы между бесконечно–малым, непрерывностью и пределом, ибо теоретический и смысловой состав этих категорий совершенно один и тот же. И только практика может решить вопрос, на что тут можно и нужно обратить внимание, какую категорию акцентировать, подчеркивать, класть в основу и какую отодвигать, брать только в виде фона, допускать только как материал для осмысления другими категориями. Словом, эти категории тоже изомерны.

Говорится: бесконечно–малое есть то, что может стать меньше любой заданной величины, или что имеет своим пределом нуль. А что такое предел? Предел для переменной величины есть то, разница между чем и переменной величиной может стать меньше любой величины, или, что то же, стремится к нулю. А что такое непрерывность, напр. непрерывная функция? Функция непрерывна в данной точке тогда, когда бесконечно мало ее приращение в случае бесконечной малости приращения ее аргумента. Вот три определения. По своему категориальному составу это совершенно одно и то же определение: везде тут 1) то, что стремится к пределу, 2) предел, к которому происходит стремление, и 3) самое стремление. В первой категории на первом плане то, что стремится, но тут же указано и на самое стремление, и на предел этого стремления. Во второй категории подчеркнуто то, куда стремление, но тут же сказано и о том, что именно стремится, и о самом стремлении. И наконец, в третьей категории подчеркнуто самое стремление (или, точнее, соотношение двух стремлений, поскольку определялась непрерывная функция), но тут же сказано и о бесконечно–малом, т. е. о нулевом пределе, не говоря уже о том, что стремится тут именно аргумент и функция, т. е. нечто. Следовательно, основное и существенное содержание понятий бесконечно–малого, непрерывности и предела—одно и то же. Не то, что эти понятия только предполагают одно другое, но они просто тождественны по содержанию, и разница тут только в порядке и форме комбинации одних и тех же категорий, т. е. разница тут только, следовательно, структурная. Только практика может решить, где тут бесконечно–малое, где предел и где чистая непрерывность.

10. Только после всех этих разграничений и различений мы можем судить о месте дифференциала, производной и интеграла на фоне общелогической теории числа.

Разумеется, поскольку мы вовсе не задаемся тут целью дать логику математического анализа как системы, а интересуемся только некоторыми его категориями в применении к логике, мы не будем подробно анализировать все эти три, только что полученные нами категории — бесконечно–малого, непрерывности и предела, а сосредоточимся только на последней.

Мы берем инфинитезимальную категорию предела и смотрим на нее теми же самыми расчленяющими глазами, какими смотрели и на число вообще, и на его инфинитезимальный тип. Тут мы тоже расчленим 1) «то, что», 2) «то, как» и 3) «то, куда», т. е. «нечто» (бытие), становление и ставшее.

Будем говорить о пределе (а всякий предел уже есть соединение того, что стремится к пределу, с самим этим стремлением, т. е. синтез конечного и бесконечного) и будем его рассматривать, считать как «то, что стремится к пределу». Как предел, это есть нечто устойчивое и, в частности, конечное. Однако в то же время это не есть конечное в абсолютном смысле, но' то, что само вовлечено в стихию непрерывного и бесконечного становления. Это дифференциал, который как таковой есть переменная величина, но который в основе все же есть синтез конечного и бесконечного, и синтез — типа предела, поскольку в его основе лежит производная (а она всегда есть предел).

Далее, продолжаем говорить о пределе. Но на этот раз пусть наш предел будет не тем, что еще только стремится к своему пределу, но самим этим стремлением, или становлением. Это есть производная, которая есть прежде всего предел; но это не просто предел, предполагающий соответствующее становление, а предел отношения двух становлений, т. е. такой предел, который предполагает рассмотрение одного становления с точки зрения другого становления, т. е. основан на становлении становления, т. е. рассматривает становление именно как становление. Совершенно ясно, что в ряду инфинитезимальных категорий предельность тут дана с сугубым выдвиганием на первый план именно становления. Производная в логическом смысле есть именно метод становления дифференциала некоторым новым пределом, который и есть интеграл.

Интеграл тоже есть прежде всего предел, как и дифференциал и производная, т. е. одинаково с ними синтез конечного и бесконечного. Однако из трех основных категорий в нем подчеркнуто не то, что становится, и не самое становление, но ставшее, то, чем стало становящееся, исчерпавши всю свою бесконечность и тем дойдя до своего предела.

Мы и тут настаиваем на полном существенном тождестве дифференциала, производной и интеграла. И только практика решает, что тут надо выдвинуть из трех моментов, одинаково данных во всех трех случаях, то ли, что стремится к пределу, самое ли стремление или то, куда идет это стремление, или его предел. Все дело, следовательно, в структуре этих понятий или, точнее, в разных структурах одного и того же понятия.

Можно сказать еще и так, как мы сказали, выставивши метрическую точку зрения на инфинитезимальное число. Можно сказать, что различие дифференциала, производной и интеграла зависит от того, чем мы будем их измерять, от единицы измерения. Это есть только другой способ для выражения принципа практики. Мы можем измерять общее инфинитезимальное число, взятое как предел, при помощи отдельных «единиц». Мы можем взять самую эту операцию «счета». И мы можем взять результат, то, что получается после такого инфинитезимального счета наших инфинитезималь–ных единиц. Из общего инфинитезимального числа, взятого по типу предела, получаются три указанные выше категории—дифференциала, производной и интеграла.

11. Сделаем сводку всего нашего анализа инфинитезимальных категорий на фоне общего учения о числе, и мы убедимся, как сложно здесь сплетение логических точек зрения, руководимое практикой, и как глубоки те простейшие и элементарнейшие понятия, которые дает математический анализ на первых же страницах своих учебников. Вот эта сводка.

А. а) То, что становится чем–то.

б) То, чем становится нечто.

в) Становление чего–то чем–то.

Б. I. Арифметическое число.

II. Трансфинитное число.

III. Инфинитезимальное число.

1. Бесконечно–малое.

2. Непрерывность.

3. Предел.

а) Дифференциал.

б) Производная.

в) Интеграл.

Таким образом, каждая из этих изученных нами категорий— дифференциала, производной и интеграла—состоит по крайней мере из пяти разных пластов.

1) Прежде всего, в основе всего и в качестве наиболее абстрактной наметки залегает общекатегориальный слой первого логического расчленения вообще: мы тут имеем самое первое полагание бытия, которое тут же стремится к другому полаганию, т. е. становящееся, становление и ставшее в их целокупной данности и вза–имоотраженности.

2) Далее, эта общекатегориальная структура выступает в числовом виде, т. е. с отвлечением от чистой качественности, и только в виде самих актов полагания с невниманием к тому, что именно полагается. В этом общечисловом слое мы различаем три разных типа.

3) Общечисловая структура выступает далее в виде инфините–зимальной: все числовые категории погружаются в стихию чистого и безраздельного становления.

4) Из этого последнего слоя образуется еще новый: под действием принципа предела. Тут и залегают изучаемые нами категории дифференциала, производной и интеграла.

5) Эти последние категории выступают раздельно и самостоятельно.

Это логическое раскрытие инфинитезимальных категорий есть не что иное, как перевод на логический язык того, что говорится в математике. Возьмем, напр., интеграл. Интеграл есть предел суммы. Это значит, что, во–первых, это есть некоторое предельное понятие вообще. Как раз это имеется нами в виду в четвертом пункте, где интеграл рассмотрен нами под принципом предела. И так как не всякий предел есть интегральный предел, то для отражения того, что это именно предел суммы, мы, во–вторых, ввели различение с дифференциалом и производной: интеграл есть предел как ставшее, в то время как дифференциал есть то, что только еще становится пределом, а производная — метод этого становления. Это наш пятый пункт. Таким образом, наши четвертый и пятый пункты можно отбросить только в том нелепом случае, если интеграл, во–первых, не считать пределом и, во–вторых, не считать пределом суммы.

Далее, существует не только предел суммы как результат некоего специфического становления, но и числовое становление вообще. Раз переменная величина может бесконечными способами стремиться к своему пределу, то, значит, существует и становление вообще. Интеграл как предел суммы есть только частный случай общего учения о бесконечно–малом, непрерывно стремящемся к пределу. Отсюда наш третий — общеинфинитезимальный слой интеграла. Как можно было бы отвергать его? Это значило бы, что интеграл как предел суммы есть единственная инфинитезимальная категория и что нет никакой общеинфинитезимальной области, куда входили бы и другие пределы, другие способы стремления к пределу.

1 ... 175 176 177 178 179 180 181 182 183 ... 219
На этой странице вы можете бесплатно читать книгу Хаос и структура - Алексей Лосев бесплатно.

Оставить комментарий

Рейтинговые книги