Хаос и структура - Алексей Лосев
- Дата:13.12.2024
- Категория: Научные и научно-популярные книги / Математика
- Название: Хаос и структура
- Автор: Алексей Лосев
- Просмотров:0
- Комментариев:0
Шрифт:
Интервал:
Закладка:
II. а) Целое не содержится ни в одной части, ибо в противном случае всякая часть уже была бы целым и, следовательно, отпала бы необходимость объединять одну часть с другой, чтобы этим способом впервые только еще получать целое. Но если целое не содержится ни в одной части, то оно не содержится и во всех частях, взятых вместе, т. е. не содержится и в их сумме. Потому целое больше как каждой своей части, так и суммы всех частей.
b) Целое содержится как в каждой своей части, так, стало быть, и в их сумме, ибо целое есть целое частей, а часть всегда есть часть целого. Потому нельзя целое оторвать от частей и части нельзя оторвать от целого. Целое складывается из частей — потому оно и есть целое, и части указывают на целое — потому они и части. Целое и есть сумма частей и созерцается в каждой отдельной части. Стало быть, целое прежде всего равно сумме своих частей, и целое равно каждой своей части. В частях ведь и нет ничего, кроме целого. Если бы в какой–нибудь части было бы нечто новое, чего не содержалось бы уже в целом, то целое, обнимая части, не отнимало бы этого нового, что содержится в отдельной части, в нескольких или во всех частях. А это значит, что целое не было бы целым. Итак, целое равно каждой своей части.
c) Целое содержится в каждой своей части. Но, употребляя слово «часть», мы имеем в виду не просто целое, а нечто большее. Если бы речь шла просто о целом, то ни к какой «части» мы не переходили бы и ни в каком новом термине не нуждались бы. Раз мы перешли к части, да еще зафиксировали ее особым термином, то ясно, что, как бы целое ни отождествлялось с частями, в «части» содержится нечто большее, чем просто в целом. Потому целое меньше каждой своей части. Целое именно содержится в части. А содержаться можно только в том, что больше содержимого и что охватывает его. Итак, целое меньше каждой своей части и меньше суммы всех своих частей.
III. Смысл, или идея, есть нечто само по себе ни целое, ни дробное; число само по себе—вне этих определений. Но смысл, идея, а в данном случае число — переходит в становление. Становление возможно внешнее и внутреннее. Целой становится идея тогда, когда она вся перешла в становление и взято все ее становление с начала до конца. Но так как становится здесь не что иное, как она же сама, эта идея, то тут происходит отождествление идеи вообще и ее становления; идея дается в аспекте своего становления, которое как бы покрывает и изолирует идею.
Получается идея как ставшее, причем это ставшее еще не имеет ничего общего с вещами, а ставшее это — всецело смысловое и числовое. Ставшее это может переходить в свою очередь в становление. Тогда разрушается цельность ставшего, и оно разбивается на «части». Таким образом, дробное число есть двухмерный символ числа, содержа, во–первых, переход от числа вообще к становлению в качестве целого (первый символический слой) и, во–вторых, переход от целого к становлению дробным (второй символический слой).
4. а) Диалектика, содержащаяся в этих трех параграфах (намеченных выше римскими цифрами I, II, III), может быть принимаема только в буквальном и отнюдь не в каком–нибудь переносном или условном смысле. Что целое одновременно и больше, и меньше своей части, и равняется ей, — это безусловное требование мысли. Больше того, эти три суждения — «целое равно части», «целое больше части», «целое меньше части» — есть одно и то же суждение. Фиксируя любое из них, мы получаем другое и третье; и невозможно признать только какое–нибудь одно из этих суждений. На этом зиждется вся диалектика, и, не усвоивши[144] этого, нечего и думать проникнуть в диалектические тайны более сложных математических конструкций.
b) Попробуем представить себе, что целое только больше части и в то же время не равно ему. Если целое только больше, то часть, следовательно, меньше целого. А если часть меньше целого, то она, стало быть, есть нечто иное, чем целое, и целого в ней не содержится. Если же целое не содержится в части, т.е. если в каждой части содержится нуль целого, то и во всех частях содержится нуль целого, ибо сумма нулей есть тоже нуль. Следовательно, если целое больше части, и только больше, то это значит, что целое не состоит из частей, а части, входящие в целое, не суть части целого, а совершенно самостоятельные вещи.
с) Могу [т] сказать, что когда утверждается, что целое больше части, и только больше (а в то же время ведь и не меньше), то это надо понимать не в том смысле, что целого совсем не содержится ни в какой части, а в том смысле, что в каждой части содержится часть целого (а не все целое). Тогда получается возможность допускать, что раз в каждой части содержится часть целого, то во всех частях содержится все целое, и, следовательно, отпадает необходимость абсурдного вывода, что целое не состоит из частей и части не суть части целого.
Однако это лишь видимость возражения. Дело в том, что здесь скрыто содержится мысль о разнообразии этих частей целого, наличных в каждой отдельной части, ибо, только утверждая, что в одной части содержится один момент целого, в другой—другой и т.д., только утверждая это, и возможно потом из сложения этих отдельных моментов целого, рассыпанных по частям, пытаться составить само целое. Но эта идея разнообразия моментов целого портит все дело, так как неясно, чем же объединяются эти разнообразные моменты целого. Если они объединяются одним из этих моментов, то, следовательно, по крайней мере хоть в одном моменте целого содержится все целое целиком и, следовательно, хотя бы тут целое не больше части. Если же они объединяются чем–нибудь выходящим за пределы каждого отдельного момента, то они должны быть тождественны между собою в отношении наличия в них этого выходящего за их пределы начала. А так как это последнее может быть только самим же целым, то целое, стало быть, совершенно одинаково содержится в каждой своей части, а не только в виде того или иного своего момента. Следовательно, отдельные части не могут быть между собою разнообразными в смысле наличия целого, и потому отпадает всякая возможность думать, [что] из частичных моментов целого можно создать целое. Так остается в силе основной аргумент, что, когда целое только больше части, — это значит, что целое не состоит из частей.
Или возьмем другое требование диалектики: целое меньше части.
d) Удивляться и вздыхать тут нечего: вся ведь диалектика состоит из антиномий, и вздохами тут не поможешь. Целое потому должно быть меньше части, что оно содержится в целом, а то, что содержится в чем–нибудь, должно быть меньше того, в чем оно содержится. Содержимое меньше содержащего. Этот «парадокс» обыкновенно «опровергается» ссылкой на «очевидную» и «всем понятную» нелепость подобного утверждения. В самом деле, что за глупость: целое меньше своей части? И тем не менее приходится эту «глупость» записать в число самых необходимых и очевиднейших истин логики и диалектики. Именно, целое содержится в части, т.е. помещается в ее пределах, и, как таковое, для того, чтобы быть целым, оно не нуждается в этих других частях целого. А раз оно не нуждается в них, они же суть нечто, то, несомненно, они нечто прибавляли бы к целому, если бы мы присоединили их сюда, и целое, лишенное их, меньше того своего состояния, когда оно бралось бы вместе с ними. Оно, во всяком случае, меньше суммы их. Помещаясь все целиком в пределах одной части, целое, несомненно, меньше всего того, что содержится еще в пределах всех других частей и их суммы. Однако отличается ли чем–нибудь сумма частей и отдельная часть в смысле наличия целого? Разве целое не присутствует везде, и во всем, и в отдельных частях совершенно одинаково и вполне в одинаковом смысле? Конечно, это так. Это условие самого наличия целого в вещах. Итак, часть, в смысле наличия целого, ничем не отличается от суммы частей и тождественна с ним. Потому, если целое, заключающееся в части, меньше суммы частей, то оно тем самым меньше и каждой отдельной части.
Дробное число, как и всякая диалектическая категория, несет на себе смысловую материю[145] всех предыдущих категорий. Мы должны помнить, что каждая диалектическая категория потому и становится таковой, что она есть не что иное, как все категории, какие только существуют, вся логическая истина в целом, но только взятая под определенным углом зрения. Но если это так, то дробное число должно содержать в себе все те моменты, которые мы зафиксировали и для целого числа. Целое число есть нечто, и, стало быть, нечто единое, единица. И дробное число есть в этом смысле нечто, нечто единое и единица. Целое неделимо и самостоятельно — и всякая дробь цела, неделима и самостоятельна. Целое есть само–полагание внутричислового содержания — и точно так же и дробное число. Вместе с тем дробное число есть антитезис целого числа и его инобытие. Поэтому оно также и во всем противоположно ему. Стало быть, все то, что мы знаем из общей диалектики по поводу взаимоотношения тезиса и антитезиса (т.е. бытия и инобытия, или «одного» и «иного»), целиком и полностью содержится в антитезисе целого и дробного числа.
- Эллинистически-римская эстетика I – II вв. н.э. - Алексей Федорович Лосев - Науки: разное
- Потребности человека, их классификация и количество. А также: теория деятельности, отрицательные чувства, стрессы, исследование сексуальной и эстетической любви - Геннадий Генев - Психология
- Из истории советской философии: Лукач-Выготский-Ильенков - Сергей Мареев - Политика
- Том 17. Рассказы, очерки, воспоминания 1924-1936 - Максим Горький - Русская классическая проза
- Читай лица! Специальная методика чтения лиц и эмоций - Светлана Филатова - Психология