Хаос и структура - Алексей Лосев
0/0

Хаос и структура - Алексей Лосев

Уважаемые читатели!
Тут можно читать бесплатно Хаос и структура - Алексей Лосев. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Хаос и структура - Алексей Лосев:
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
Читем онлайн Хаос и структура - Алексей Лосев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 114 115 116 117 118 119 120 121 122 ... 219

c) Не мешает также все время помнить все фундаментальное отличие целого числа от положительного числа. Это отличие, как, впрочем, мы уже хорошо знаем, 3) сводится к различию внутреннего и внешнего инобытия числа, или сущностного (смыслового) и фактического, материального <…>, к различию «идеальной» и «реальной» материи, внутреннего и внешнего самоотождесгвления. Когда мы полагаем число и получаем положительное число, мы закрываем глаза на его внутреннее содержание; грубо говоря, мы тут забываем, из скольких и каких единиц оно состоит; забываем его внутриколичествен–ную, счетную простоту. И в самом деле, знак «плюс», приставленный к какому–нибудь числу, привносит в него новую особенность, отнюдь не в смысле того или иного счетного его изменения (например, увеличения или уменьшения). Новое, что привнесено сюда знаком «плюс», касается всецело судьбы этого числа вне всякой зависимости от его счетной величины. Новое тут есть тот новый путь, по которому призвано двигаться данное число, т. е. некое поле внешнего инобытия, по которому должно двигаться это число. Именно, это есть поле, на котором данное число утверждается, полагается, насаждается и таким образом прибавляется ко всему, что было до него. Совсем другое — целое число. Тут мы, наоборот, закрываем глаза на внешний путь числа, на судьбу его во внешнем инобытии, игнорируем вопрос о том, что оно будет делать с другими числами, если его пустить по данному пути, и что будет делаться от этого с ним самим. Тут мы сосредоточиваемся на самом числе, независимо от его покоя или движения, и спрашиваем себя: то ли это число, каким оно должно быть, оно ли оно или оно перестало быть самим собой? И вот, проверивши его путем определенного мысленного осязания его структуры, мы убеждаемся, что это число есть действительно оно само, и тут–то мы и говорим, что перед нами целое число. Таким образом, будучи тезисом в смысле полагания его внутреннего содержания (и противополагаясь, как мы сейчас увидим, дробному числу как антитезису), оно само является антитезисом в смысле перевода нашего внимания с внешней положенности числа ко внутренней положенности его содержания. Несомненно, тут должен быть и свой синтез, — синтез внешней положенности положительного числа и внутренней положенности целого числа. Но об этом синтезе у нас будет рассуждение в дальнейшем, а пока переходим к антитезису целого числа и проследим диалектическую судьбу внутренней числовой самоположенности.

§ 95. в) Дробное число.

1. Целое число есть тезис. Что же является его антитезисом? Целое число есть внутренняя самоположенность числа. Что является антитезисом внутренней самоположенности числа? Напрашивается сам собою антитезис в виде внешней самоположенности. Однако на данной диалектической позиции это нам запрещается, так как о внешней числовой самоположенности трактует специальная диалектическая триада, нами изложенная выше в виде триады: положительное число, отрицательное число, нуль. Переходя к антитезису, мы должны остаться в недрах все того же внутреннего самополагания, внутреннего содержания числа. Что получится, если мы переведем диалектическую триаду в пределах изучаемого нами внутреннего инобытия числа и не выйдем ни к какому внешнему становлению? Опять, для наглядности, представим себе круг или шар. Круг уже не мыслится, например, катящимся; и вновь устанавливаемые различия относятся не к его поведению на той поверхности, по которой он движется, но всецело лишь к нему самому, к его внешнему виду. Однако провести то или иное различие на поверхности шара — это значит отличить одну область круга от другой, оставаясь все время в его пределах. Отличить же «одно» от «иного» в пределах круга — значит представить круг дробящимся, значит раздробить целый круг на отдельные части. Только отделивши одну часть от другой, мы можем их сравнивать, т. е. можем вносить инобытие в пределы внутреннего содержания круга. Стало быть, переход в инобытие означает здесь переход к частям, т. е. переход от целого числа к дробному.

2. Трактуя дробное число как антитезис целого числа, мы можем привлечь для характеристики дробного числа все те диалектические свойства, которыми отличается антитезис вообще. Мы уже видели плодотворность применения этого способа рассуждения к анализу понятия отрицательного числа. Это же можно применить и здесь. В том–то ведь и заключается огромное преимущество диалектического метода, что он обладает исключительной силой обобщения, конструируя понятия так, чтобы уже самый порядок их обнаруживал периодически повторяющиеся в них свойства, т. е. тот ритм, который является ритмом живой и живущей их сущности. Однако общие свойства антитезиса мы припомним здесь лишь вкратце.

Антитезис есть отрицание, отрицание факта. Это отрицание, как мы знаем, относительное, а не абсолютное. Относительное отрицание факта сохраняет факт в виде некоей идеи, в виде идеи факта. Дробь по самому существу своему живет дроблением, но дробить можно лишь целое. Целое число содержится в дробном не как числовая субстанция и факт (как факт оно тут как раз отрицается), но как идея. Дробь, сама не будучи целым числом, всегда указывает на то, на какие целые части разделена целая единица и сколько таких частей взято. Ясно, что элемент целого числа содержится в дробном, но содержится лишь в принципе, смысловым образом, содержится как идея, а не как факт и субстанция. Если целое число прямо утверждает и полагает свое полное собственное содержание внутри себя, то дробное число совсем не в этом находит свою сущность и свое осуществление. Здесь налично только как бы воспоминание об этом содержании, а то, что налично фактически и субстанциально, есть уход от этого содержания и переход к новому. Как отрицательное число по сравнению с положительным есть нечто как бы «идеальное» по сравнению с «реальностью» «фактического числа», так и дробное число есть нечто «идеальное» по сравнению с «реальностью» целого. Вернее же, эти две категории — целое и дробное— находятся вообще в состоянии диалектической взаимозависимости: если целое считать «реальностью», то дробь — «идеальна», и если целое — «идеально», то дробь — «реальна». Это дает правильную позицию для установки диалектики целого и части, диалектики, которую редко представляют себе в правильной форме.

Отрицательное число как бы окружает сферу положительного числа; оно необходимо как то, что отличает положительное число от всего другого и тем самым его определяет. Так и целое число, чтобы быть, требует для себя отрицания, инобытия, которое бы его отличало от всего иного и тем определяло бы. Вопрос, однако, в отношении целого числа несколько осложняется тем, что мы в данном случае не можем выходить за пределы данной категории (целого) и должны искать отрицания и инобытия в пределах ее же самой. Это приводит к тому, что граница, отделяющая целое от его инобытия, проходит по самому же целому, по его, так сказать, телу, по его поверхности. Это и значит, что целое рассекается на части, что от категории целого мы переходим к категории части, дробного. И так же, как вообще в диалектике «бытие» относится к «небытию», «одно» к «иному», так относится и здесь «целое» к «частям».

3. Формулируем примитивную и элементарную диалектику, возникающую здесь из общих оснований нашего постоянного метода.

I. а) Целое состоит из частей, или «целое» равно «всему», всем частям, ибо целое тут не что иное, как само же число, а число есть оно само, т.е. состоит из себя же. Целое больше не из чего составить, как из частей, ибо в числе больше ничего и нет, кроме него самого, т. е. его частей.

b) Целое не состоит из своих частей, ибо само суждение о наличии частей (часть есть всегда часть чего–нибудь) может состояться только тогда, когда есть представление о целом. Целое впервые делает возможным наличие частей; оно не состоит из частей, но предшествует им, не зависит от них; и не они его порождают, но оно — их.

II. а) Целое не содержится ни в одной части, ибо в противном случае всякая часть уже была бы целым и, следовательно, отпала бы необходимость объединять одну часть с другой, чтобы этим способом впервые только еще получать целое. Но если целое не содержится ни в одной части, то оно не содержится и во всех частях, взятых вместе, т. е. не содержится и в их сумме. Потому целое больше как каждой своей части, так и суммы всех частей.

b) Целое содержится как в каждой своей части, так, стало быть, и в их сумме, ибо целое есть целое частей, а часть всегда есть часть целого. Потому нельзя целое оторвать от частей и части нельзя оторвать от целого. Целое складывается из частей — потому оно и есть целое, и части указывают на целое — потому они и части. Целое и есть сумма частей и созерцается в каждой отдельной части. Стало быть, целое прежде всего равно сумме своих частей, и целое равно каждой своей части. В частях ведь и нет ничего, кроме целого. Если бы в какой–нибудь части было бы нечто новое, чего не содержалось бы уже в целом, то целое, обнимая части, не отнимало бы этого нового, что содержится в отдельной части, в нескольких или во всех частях. А это значит, что целое не было бы целым. Итак, целое равно каждой своей части.

1 ... 114 115 116 117 118 119 120 121 122 ... 219
На этой странице вы можете бесплатно читать книгу Хаос и структура - Алексей Лосев бесплатно.

Оставить комментарий

Рейтинговые книги