Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко
0/0

Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко

Уважаемые читатели!
Тут можно читать бесплатно Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко. Жанр: Биология. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко:
Величайшие биологи прошлого пытались разобраться в том, для чего живым существам нужно половое размножение, как оно возникло, какую пользу принесло и почему не исчезло. В книге «Секс с учеными» рассказывается, как ученые попытались связать секс с мутационным процессом и в результате создали целую область науки – популяционную генетику. Речь заходит о разделении на два пола, в котором ничего нельзя понять без теории игр, и половых хромосомах, вокруг которых закручиваются увлекательные сюжеты из молекулярной биологии. Затем повествование переходит к мейозу, о котором до сих было крайне затруднительно прочитать что-то понятное неспециалистам. В связи с ним затрагивается и важнейший вопрос современной науки – происхождение жизни на Земле. Наконец, нашлось в книге место и для обсуждения роли секса в жизни общества, о которой все вроде бы давным-давно написано, но лишняя пара глав никому не повредит.Будет ли обладать эволюционным преимуществом мутация к бесполому размножению у человека? Девушка, получившая в дар от природы способность беременеть просто так, без всякого внешнего повода, скорее всего, станет большой проблемой для медиков и/или социальных служб. Хотя, конечно, романтические фантазии о новом продвинутом разумном виде вроде «Славных Подруг» из романа братьев Стругацких «Улитка на склоне» тоже имеют право на существование.Для когоДля всех, кто хочет понять, для чего нужно живым существам половое размножение, как оно возникло, какую пользу принесло и почему не исчезло в процессе эволюции. Эта книга для тех, кто интересуется биологией и генетикой и готов вместе с учеными искать ответы на неразгаданные загадки эволюции.Каждый сперматозоид Льва Николаевича нес в себе ровно половину его диплоидного генома. За всю его жизнь тринадцать сперматозоидов слились с тринадцатью яйцеклетками его супруги, так что следующему поколению перешло тринадцать половинок генома писателя.

Аудиокнига "Секс с учеными: Половое размножение и другие загадки биологии"



🔬 В аудиокниге "Секс с учеными: Половое размножение и другие загадки биологии" от Алексея Алексенко мы погружаемся в захватывающий мир биологии и изучаем различные аспекты полового размножения и другие загадки этой науки. Автор подробно рассматривает процессы, происходящие в организмах животных и растений, и делится удивительными фактами и открытиями.



🌿 Слушая эту аудиокнигу, вы узнаете о том, как размножаются различные виды живых существ, какие механизмы лежат в их основе, и какие законы природы регулируют этот процесс. Секс с учеными - это не просто увлекательное путешествие в мир биологии, но и возможность расширить свои знания и понимание окружающего мира.



🎧 Сайт knigi-online.info предоставляет возможность слушать аудиокниги онлайн бесплатно и без регистрации на русском языке. Здесь собраны бестселлеры и лучшие произведения различных жанров, включая аудиокниги по биологии. На сайте вы сможете насладиться увлекательными произведениями и расширить свой кругозор.



Об авторе



Алексей Алексенко - известный биолог, автор множества научно-популярных книг о живой природе. Его работы пользуются популярностью у читателей всех возрастов благодаря ясному изложению сложных научных концепций и увлекательному стилю.

Читем онлайн Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 54 55 56 57 58 59 60 61 62 ... 85
узнать друг друга.

Итак, тем или иным способом, или с помощью их комбинации, или еще каким-то доныне неведомым образом, но наконец хромосомы-гомологи узнают друг друга. Задержимся на этом моменте, чтобы прочувствовать его важность. До сих пор гомологичные хромосомы влачили свое существование порознь. Сначала они жили в разных особях популяции, возможно не встречаясь десятки тысяч лет. Все наслышаны о том, как археогенетики искали «Y-хромосомного Адама» – то есть общего предка всех Y-хромосом – и у них получалось, что этот предок существовал от сотни до нескольких сотен тысяч лет назад. Остальные человеческие хромосомы тоже могут иметь весьма удаленных общих предков и никогда не встречаться, если, конечно, речь не идет о браке близких родственников. Потом юноша и девушка понравились друг другу и решили завести семью (или просто плохо предохранялись). Хромосомы наконец-то оказались в одном ядре, но у них все равно еще не было случая наладить контакт. И лишь через некоторое время после встречи юноши и девушки и после встречи их клеток – чуть позже мы выясним, через какое именно время, – наконец происходит встреча самих хромосом.

Такое событие клетка обставляет со всей возможной торжественностью. Напомню, что к этому моменту каждая из гомологичных хромосом удвоена, то есть состоит из двух хроматид. В начале мейоза между хроматидами начинает формироваться хромосомная ось. Она похожа на то, как сестринские хроматиды удерживаются вместе перед обычным клеточным делением, – их склеивают белки-когезины. Однако при мейозе эти белки немного другие, особенные. Вообразите толстый белковый шнур, к которому с двух сторон прикреплены ниточки ДНК, причем между точками крепления они образуют торчащие наружу петли, так что все вместе немного похоже на ершик для мытья посуды. Именно в таком нарядном виде хромосомы являются к моменту своей встречи. Когда процесс поиска гомолога завершен, две хромосомные оси располагаются параллельно друг другу на расстоянии около 400 нм.

Дальше происходит нечто загадочное. На хромосомной оси собираются разные белки, причем из некоторых торчат заряженные отростки. В результате вся конструкция из двух осей напоминает расстегнутую молнию. А потом молния просто застегивается! Отростки zip-белков (так они называются) смыкаются друг с другом за счет электрического взаимодействия, и гомологичные хромосомы соединяются по всей длине, так что их оси теперь уже оказываются на расстоянии всего около сотни нанометров друг от друга. Называется вся эта конструкция синаптонемный комплекс, сокращенно СК, а само событие встречи хромосом-гомологов – это синапсис. Некоторые организмы (например, мой любимый гриб аспергилл или самцы дрозофилы) обходятся без синаптонемного комплекса, но самый правильный мейоз, конечно, сопровождается образованием СК.

Зачем все это? Простой ответ: чтобы две молекулы ДНК могли беспрепятственно рекомбинировать. Действительно, расстояние в 100 нм как будто специально подобрано для того, чтобы после внесения двойных разрывов одноцепочечные хвосты ДНК, облепленные белками RAD51 (он же RecA), могли легко дотянуться до гомологичной хромосомы. Искать им уже ничего не надо: благодаря всей этой механике гомологичные места в хромосомах находятся точно напротив друг друга. На хромосомных осях были замечены «рекомбиносомы» – белковые машины, обустраивающие разные этапы рекомбинации. Там, где они замечены, впоследствии возникают хиазмы – видимые в микроскоп перекрестия хромосом, свидетельствующие о том, что хромосомы обменялись участками: произошел кроссинговер.

Однако простым ответом не так-то легко удовлетвориться. Мы уже знаем, что именно с помощью двойных разрывов и рекомбинации у многих организмов гомологичные хромосомы находят друг друга и укладываются рядышком по всей длине. А теперь нам пытаются сказать, что это укладывание само необходимо для рекомбинации. Получается замкнутый круг, по которому читателя явно водят за нос. Так что вот вам сложный ответ, который звучит даже проще, чем простой: на самом деле никто до сих пор не знает, зачем нужен синаптонемный комплекс, во всей его роскошной сложности, тем более что кое-кто прекрасно обходится и без него. В одном замечательном научном обзоре упомянуто целых семь гипотез, объясняющих роль СК, и это тот случай, когда семь гипотез хуже одной.

Кое о чем, однако, ученые догадываются. Несомненно, СК помогает контролировать число точек рекомбинации на хромосому. Слишком много рекомбинаций – плохо, потому что это все же опасное дело и есть риск повредить хромосому, порубив в лапшу собственные бесценные гены. А если кроссинговеров будет слишком мало или не будет вообще, то не смогут натянуться нити веретена деления, потому что именно хиазмы удерживают гомологичные хромосомы вместе до самого последнего момента – до нового расставания. Тогда все опять-таки пойдет неправильно: расставание выйдет скомканным и кто-то потеряется. Кроме того, при мейозе важно не перепутать сестринские и гомологичные хроматиды. Рекомбинация должна произойти именно между гомологами, хотя, казалось бы, сестринские хроматиды гораздо «гомологичнее» – они попросту одинаковы – и при обычной клеточной жизни рекомбинируют чаще всего именно они. СК как минимум помогает в этом разобраться, потому что сестринские и гомологичные хроматиды расположены в нем в строгом порядке: первые соединены хромосомной осью, а вторые – «молнией». Это, наверное, позволяет клетке их различать.

Подведем хоть какие-то итоги, попытавшись все же ответить на сакраментальный вопрос: «И зачем все это нужно?!» Есть три кита: рекомбинация, узнавание гомологичных хромосом, правильное расхождение хромосом при мейозе по дочерним клеткам. Кто из этих китов на ком стоит? Рекомбинация – если не всегда, то по крайней мере часто – нужна для узнавания, хотя в обычной жизни клетки ее роль в том, чтобы чинить повреждения ДНК. Узнавание нужно для того, чтобы хромосомы образовали СК и потом правильно разошлись по клеткам. СК нужен, чтобы упорядочить рекомбинацию. А упорядоченная рекомбинация опять же нужна для того, чтобы образовались хиазмы: они помогают нитям веретена деления правильно натянуться, и без них хромосомам сложнее правильно разойтись по клеткам. В общем, все киты стоят друг на друге, и надо быть Морисом Эшером, чтобы все это изобразить, не говоря уж о том, чтобы описать словами.

И еще мы в суматохе совсем забыли о том, с чего началась вся история: рекомбинация и мейоз нужны для того, чтобы тасовать гены и избавлять организмы от мутационного груза. Из этой главы может создаться впечатление, что перетасовка генов – вообще не главная задача, а просто побочный продукт всей описанной кутерьмы, пусть и весьма удачный. Так ли это или нет, ученые рано или поздно непременно узнают.

А вот что мы узнали наверняка, так это насколько важно клетке провести весь процесс безошибочно, не растеряв свои хромосомы, и какие сложные и разнообразные приемы она для этого использует. Цена ошибки очень велика: если хромосомы при мейозе разойдутся неправильно, то ваши гаметы (или споры, если вы гриб) окажутся негодными и потенциально бесконечная родословная прервется. При этом, несмотря на все ухищрения, ошибки все же случаются. Из следующих глав мы узнаем о «чекпойнтах» – особых механизмах проверки, правильно ли идет мейоз и не проще ли сразу убить незадачливую клетку, которая запуталась в своих хромосомах.

Но раз уж наш уважаемый читатель читает эти строки, значит, в генеалогической линии его предков – от далекого LECA, общего предка эукариот, жившего больше миллиарда лет назад, и до сегодняшнего дня – все вышеописанное прошло как надо.

БИБЛИОГРАФИЯ

Богданов Ю. Ф. Белковые механизмы мейоза // Природа. 2008. № 3. С. 3–9.

Ding D. A Rush Hour Towards Sexual Reproduction: The Chromosome Dynamics During Meiosis. Chinese Science Bulletin. 2011. 56: 3500–3503.

Ding D. Q., Haraguchi T., Hiraoka Y. From Meiosis to Postmeiotic Events: Alignment and Recognition of Homologous Chromosomes in Meiosis. FEBS Journal. 2010. 277(3): 565–570.

Ding D. Q., Okamasa K., Yamane M., et al. Meiosis-Specific Noncoding RNA Mediates Robust Pairing of Homologous Chromosomes in Meiosis. Science. 2012. 336(6082): 732–736.

Li W.-C., Chuang Y.-C., Chen C.-L., et al. Two Different Pathways for Initiation of Trichoderma reesei Rad51-only Meiotic Recombination. bioRxiv. 2019. 644443.

Miné-Hattab J., Rothstein R. Increased Chromosome Mobility Facilitates Homology Search During Recombination. Nature Cell Biology. 2012. 14(5): 510–517.

Naranjo T. Finding the Correct Partner: The Meiotic Courtship. Scientifica (Cairo). 2012. 509073.

Phillips C. M., Dernburg A. F. A Family of Zinc-Finger Proteins Is Required for Chromosome-Specific Pairing and Synapsis during

1 ... 54 55 56 57 58 59 60 61 62 ... 85
На этой странице вы можете бесплатно читать книгу Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко бесплатно.
Похожие на Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко книги

Оставить комментарий

Рейтинговые книги