Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко
0/0

Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко

Уважаемые читатели!
Тут можно читать бесплатно Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко. Жанр: Биология. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко:
Величайшие биологи прошлого пытались разобраться в том, для чего живым существам нужно половое размножение, как оно возникло, какую пользу принесло и почему не исчезло. В книге «Секс с учеными» рассказывается, как ученые попытались связать секс с мутационным процессом и в результате создали целую область науки – популяционную генетику. Речь заходит о разделении на два пола, в котором ничего нельзя понять без теории игр, и половых хромосомах, вокруг которых закручиваются увлекательные сюжеты из молекулярной биологии. Затем повествование переходит к мейозу, о котором до сих было крайне затруднительно прочитать что-то понятное неспециалистам. В связи с ним затрагивается и важнейший вопрос современной науки – происхождение жизни на Земле. Наконец, нашлось в книге место и для обсуждения роли секса в жизни общества, о которой все вроде бы давным-давно написано, но лишняя пара глав никому не повредит.Будет ли обладать эволюционным преимуществом мутация к бесполому размножению у человека? Девушка, получившая в дар от природы способность беременеть просто так, без всякого внешнего повода, скорее всего, станет большой проблемой для медиков и/или социальных служб. Хотя, конечно, романтические фантазии о новом продвинутом разумном виде вроде «Славных Подруг» из романа братьев Стругацких «Улитка на склоне» тоже имеют право на существование.Для когоДля всех, кто хочет понять, для чего нужно живым существам половое размножение, как оно возникло, какую пользу принесло и почему не исчезло в процессе эволюции. Эта книга для тех, кто интересуется биологией и генетикой и готов вместе с учеными искать ответы на неразгаданные загадки эволюции.Каждый сперматозоид Льва Николаевича нес в себе ровно половину его диплоидного генома. За всю его жизнь тринадцать сперматозоидов слились с тринадцатью яйцеклетками его супруги, так что следующему поколению перешло тринадцать половинок генома писателя.

Аудиокнига "Секс с учеными: Половое размножение и другие загадки биологии"



🔬 В аудиокниге "Секс с учеными: Половое размножение и другие загадки биологии" от Алексея Алексенко мы погружаемся в захватывающий мир биологии и изучаем различные аспекты полового размножения и другие загадки этой науки. Автор подробно рассматривает процессы, происходящие в организмах животных и растений, и делится удивительными фактами и открытиями.



🌿 Слушая эту аудиокнигу, вы узнаете о том, как размножаются различные виды живых существ, какие механизмы лежат в их основе, и какие законы природы регулируют этот процесс. Секс с учеными - это не просто увлекательное путешествие в мир биологии, но и возможность расширить свои знания и понимание окружающего мира.



🎧 Сайт knigi-online.info предоставляет возможность слушать аудиокниги онлайн бесплатно и без регистрации на русском языке. Здесь собраны бестселлеры и лучшие произведения различных жанров, включая аудиокниги по биологии. На сайте вы сможете насладиться увлекательными произведениями и расширить свой кругозор.



Об авторе



Алексей Алексенко - известный биолог, автор множества научно-популярных книг о живой природе. Его работы пользуются популярностью у читателей всех возрастов благодаря ясному изложению сложных научных концепций и увлекательному стилю.

Читем онлайн Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 52 53 54 55 56 57 58 59 60 ... 85
не любят теряться, их за это отбраковывает отбор. Однако игра стоит свеч, если в молекуле изначально был дефект – например, одна из букв-оснований оказалось подпорченной и ее пришлось вырезать как раз с образованием двойного разрыва. Единственный вариант спасения – залатать дырку по образцу похожей молекулы.

А с чего бы возник этот дефект? Ну, например, в результате прямого попадания заряженной частицы, то есть под воздействием радиации.

Итак, одноцепочечный хвост несчастной изуродованной молекулы ДНК мечется по клетке в поисках партнера. Ему помогает в этом некий белок, который облепляет этот самый хвост со всех сторон. Это и есть тот самый белок, у бактерии кишечной палочки называющийся RecA и который наш преподаватель иначе как «таинственным» не называл. Rec – это от слова «рекомбинация»: бактерии-мутанты по гену этого белка не умеют заниматься рекомбинацией, даже когда все остальные компоненты на месте. Очень похожий белок обнаружили и у высших организмов (сначала у дрожжей, а потом и прочих, включая нас с вами), и называется он RAD51. RAD – это уже от слова «радиация»: мутанты по гену этого белка оказываются к ней очень чувствительны, потому что не умеют залатывать повреждения своей ДНК. Есть он и у архей, и там он тоже называется RAD. А вот у нашего старого знакомого аспергилла имя этого белка – UvsC, и это означает «чувствительность к ультрафиолету». Это значит, что механизм рекомбинации, о котором мы сейчас толкуем, немыслимо древний и фундаментальный: им для разных надобностей пользуются абсолютно все ветви жизни на Земле.

Один и тот же белок называется по-разному оттого, что у разных организмов мутации в нем отбирали разными способами, но суть-то одна: если отключить RecA, он же RAD51, он же UvsC, клетка теряет способность к рекомбинации, а заодно становится очень чувствительной к самым разным воздействиям, способным повреждать ДНК. Значит, рекомбинация помогает как-то противостоять этой напасти. А помогает она так: когда одноцепочечный хвост найдет партнера, все те части молекулы, которые были удалены на первой стадии, начинают восстанавливаться по образцу гомологичной молекулы. В результате этих пертурбаций обе молекулы становятся как новенькие. Побочный результат – обмен фланговыми частями вместе со всеми генами, которые там находились. То есть, собственно говоря, кроссинговер.

Тот факт, что в некоторых случаях Rec = RAD, – то есть механизмы рекомбинации и устойчивость организмов к радиоактивному излучению имеют много общего, – сыграл важную роль в истории науки. Им объясняется огромный энтузиазм, с которым рекомбинацию изучали именно в период холодной войны, когда все оживленно готовились к появлению ядерного гриба и радиоактивного пепла. В изучение этих механизмов вкладывались немалые деньги, предназначенные на оборонные исследования. Возможно, именно благодаря этим деньгам сравнительно быстро удалось в общих чертах разобраться в интимных подробностях рекомбинации. Ученые-то с самого начала понимали, что рекомбинация сама по себе есть очень фундаментальное свойство жизни, но, когда просишь денег на исследования, не грех упомянуть о перспективах создания «лекарства от радиации» для солдат будущей Третьей мировой. И неспроста нам, студентам очень оборонно-ориентированного вуза МИФИ, лекции по всем биологическим специальностям читали ученые, которые в тот или иной период своей карьеры занимались тем, как живая материя взаимодействует с радиацией. Другое дело, что военным в итоге не было пользы от этих штудий, зато была польза для фундаментальной науки.

И вот еще кому была польза: врачам и их пациентам. Белку RAD51 (он же таинственный RecA) у людей помогают два интересных белка, BRCA1 и BRCA2. Они тоже в нужный момент оказываются там, на отчаянно ищущем помощи одноцепочечном хвосте ДНК. Их названия происходят от слов Breast Cancer – рак груди, потому что мутации в соответствующих генах сильно повышают вероятность этой напасти. Именно из-за таких мутаций прекрасная Анджелина Джоли решила сделать себе профилактическую мастэктомию. Отметим для себя, что, раз небольшие дефекты этих белков чреваты столь серьезными последствиями, значит, рекомбинация не игрушка и живому организму жизненно важно, чтобы там все прошло правильно. Причем важно не только в контексте секса и размножения, но и для повседневной жизни обычного соматического органа[16].

Напрашивается фундаментальный вопрос, который останется без ответа. А может, рекомбинация, перетасовывающая гены, в том числе во время мейоза у высших организмов, возникла совсем не за этим? Может быть, это древний механизм ремонта повреждений, который гораздо позже был привлечен к новой работе: создавать разные комбинации генов и избавляться от мутационного груза (впрочем, мутационный груз и сам имеет прямое отношение к повреждениям ДНК)?

Вопрос это риторический, поскольку природа не знает слова «зачем». Когда бактерия захватывает из внешней среды чужую ДНК в надежде подправить свой геном (как было сказано, это называется «трансформация»), она делает это не «зачем», а «почему», – потому что ей плохо и чужая ДНК может ей помочь. Бактерия не знает, в чем ее проблема и как ей себя лечить. Может быть, с помощью чужой ДНК получится просто подштопать свой геном, а возможно, удастся встроить новый полезный ген, который как раз и даст шанс выпутаться из передряги. Чистый оппортунизм. Но именно из него, кажется, вырос весь этот масштабный проект под названием «мейоз» и «секс». А возможно, ради этого он и был затеян.

Итак, вполне возможно, что главная цель рекомбинации – вовсе не перетасовка генов во время полового процесса. С другой стороны, некоторые ученые подозревают, что и в сексе рекомбинация – далеко не самое главное. Все это отчасти прояснится в следующих главах, а отчасти так и не прояснится, потому что ученые раздумывают об этом прямо сейчас и заранее непонятно, к чему они придут.

БИБЛИОГРАФИЯ

Del Val E., Nasser W., Abaibou H., Reverchon S. RecA and DNA Recombination: A Review of Molecular Mechanisms. Biochemical Society Transactions. 2019. 47(5): 1511–1531.

Fun and Entertainment. Meselson and Radding Model of Recombination. Meselson and Radding Model of Recombination. https://youtu.be/YUX90474wWk

Holliday R. A Mechanism for Gene Conversion in Fungi. Genetical Research. 2007. 89(5–6): 285–307.

Potter H. Pictures Considered #28: The χ-Form Holliday Recombination Intermediate. American Society for Microbiology Blogs, Small Things Considered, 2015–08.

Szostak J. W., Orr-Weaver T.L., Rothstein R. J., Stahl F. W. The Double-Strand-Break Repair Model for Recombination. Cell. 1983. 33(1): 25–35.

Глава тридцатая, в которой хромосомы узнают, что они гомологичные

Синапсис

Итак, мы наконец-то нарисовали схемы моделей рекомбинации – это когда-то надо было сделать, и с самой третьей главы, с плоских шуточек о семействе Толстых, я готовился к этому моменту и боялся его. Рекомбинация – штука непростая, зато она универсальна. Напомню, что она бывает у всех организмов, а не только у сложных, балующихся сексом, и даже у сложных она происходит не только во время мейоза, но и по совершенно другим поводам.

Теперь возвращаемся к мейозу. Он, как было сказано, начинается с того, что гомологичные хромосомы (то есть похожие хромосомы, полученные от двух родителей, каждая в составе своего гаплоидного набора) находят друг друга, чтобы потом прорекомбинировать и чинно разойтись по разным дочерним клеткам (гаметам или спорам). Как же они узнают друг друга?

В предыдущей главе был описан процесс, в результате которого, вообще говоря, молекула ДНК может найти другую, похожую. Именно с него начинается рекомбинация. Напомню, и даже с дословной цитатой: в цепи ДНК появляется двойной разрыв, а потом «одноцепочечный хвост несчастной изуродованной молекулы ДНК мечется по клетке в поисках партнера». Легко сказать «мечется». В бактериальной клетке хвост еще может «метаться», потому что внутри она жидкая. А вот у высших, то есть эукариотических, организмов метаться особенно не приходится. Внутренность клеточного ядра больше похожа на студень, а если вглядеться пристальнее, то на сложный лабиринт из всяких непонятных молекулярных штук. Представьте себе мучения бедной маленькой хромосомки, пытающейся найти в этих дебрях родственную душу. Неудивительно, что в наших с вами ядрах обычно ничего не мечется и не движется: как ни посмотри на ядро в микроскоп, оно выглядит инертным и всегда одинаковым (если, конечно, вы не подгадали взглянуть на ядро в момент клеточного деления). Каждая хромосома занимает в клетке определенный объем, обычно не перепутываясь с другими.

Родни Ротстейн (род. 1947; он один из тех, кто когда-то разобрался в деталях механизма рекомбинации путем починки двойного разрыва) взялся выяснить, как именно движутся в диплоидной клетке гомологичные хромосомы. Он пометил особым красителем

1 ... 52 53 54 55 56 57 58 59 60 ... 85
На этой странице вы можете бесплатно читать книгу Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко бесплатно.
Похожие на Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко книги

Оставить комментарий

Рейтинговые книги