Аппаратные интерфейсы ПК. Энциклопедия - Михаил Гук
- Дата:20.06.2024
- Категория: Компьютеры и Интернет / Компьютерное "железо"
- Название: Аппаратные интерфейсы ПК. Энциклопедия
- Автор: Михаил Гук
- Просмотров:4
- Комментариев:0
Шрифт:
Интервал:
Закладка:
Управляющие регистры хранят информацию об адресе микросхемы, управляют работой микросхемы в различных режимах, содержат счетчики регенерации для банков и строк, параметры настройки временных циклов. В них же можно прочитать информацию о конкретной микросхеме — организация, версия протокола и т. п. В составе управляющих есть и тестовые регистры.
Инициализация памяти включает определение наличия микросхем на шине, назначение им идентификаторов и программирование их параметров. После сброса микросхемы не имеют собственных адресов, а линии SIO0 и SIO1 у них соединены. В таком состоянии контроллер по шине CMD посылает широковещательную команду на разъединение линий, после чего для него по линии SIO оказывается доступной только ближайшая микросхема канала. Ей назначается адрес (SDEVID) и дается команда на соединение линий, в результате к контроллеру подключается вторая микросхема. Она будет пронумерована очередной командой, заставляющей все доступные ненумерованные микросхемы (то есть именно ее) принять указанный номер. Далее замыкаются ее линии SIO, и этот процесс продолжается до самой дальней микросхемы.
После завершения этого «переучета» включается нормальная синхронизация, и дается время для установления режима схем DLL. После двукратной активации и предварительного заряда каждого банка каждой микросхемы память готова к определению доменов синхронизации и назначению каждой микросхеме соответствующих параметров задержек. Также им должны быть присвоены идентификаторы в канале (DEVID), которые могут и не совпадать со значениями SDEVID (идентификатором на последовательной шине).
Обязательным «фирменным» компонентом ОЗУ на RDRAM является контроллер памяти. В его задачу входит обслуживание микросхем памяти, установленных в канале, по запросам, поступающим со стороны интерфейса системной шины компьютера. Часть контроллера, обращенная к каналу, инвариантна к архитектуре компьютера. Именно она «знает» протокол RDRAM и является продуктом фирмы Rambus. Контроллер RDRAM встраивается в чипсеты для процессоров P6 (например, 1820, 1840), Pentium 4 (1850 с 32-разрядным каналом, то есть уже под пары модулей RIMM) и других архитектурных линий.
В соответствии со спецификацией RDRAM в одном канале может быть до трех слотов под RIMM, и их интерфейсные линии соединяются змейкой. В слоты могут устанавливаться RIMM различной емкости (сейчас они выпускаются на 64, 96, 128 и 256 Мбайт). Однако пока что фирме Intel не удалось достичь устойчивой работы канала с тремя модулями и пришлось ограничиться двумя. Теперь в памяти появился новый элемент-пустышка Continuity module. Это как бы модуль RIMM, но без микросхем памяти, и нужен он для того, чтобы замыкать цепь канала Rambus. Такая «заглушка» должна устанавливаться во все слоты канала, не занятые под модули RIMM. Если используются не все слоты, то память выгоднее ставить ближе к контроллеру — она будет работать быстрее (см. выше).
7.1.4. Память с виртуальными каналами — VC DRAM
Идея архитектуры памяти с виртуальными каналами (VirtualChannel Memory Architecture, не путать с виртуальной памятью!) заключается в помещении между массивом запоминающих ячеек и внешним интерфейсом микросхемы памяти набора канальных буферов. При этом операции обмена данными разделяются на два процесса: «фасадный» обмен данными с каналами и «тыловой» обмен между каналами и массивом запоминающих ячеек. Оба процесса выполняются по командам со стороны внешнего интерфейса почти независимо друг от друга. Архитектура виртуальных каналов приложима к памяти любого типа, включая ПЗУ и флэш-память, но наиболее интересна она в приложении к динамической памяти — VC DRAM.
Устройство VC DRAM рассмотрим на примере микросхем емкостью 128 Мбит, на которых строятся выпускаемые модули DIMM VC DRAM. По интерфейсу (составу и уровням сигналов) микросхемы и модули VC DRAM аналогичны обычным микросхемам SDRAM, но отличаются системой команд. Микросхемы имеют такую же внешнюю организацию по 4,8 или 16 бит данных, но совершенно иную внутреннюю архитектуру. Они имеют две матрицы (два банка) запоминающих ячеек размером 8 К×8 К, то есть каждая строка имеет объем 8 Кбит и состоит из четырех сегментов размером по 2 Кбит. Между матрицами и внешним интерфейсом имеется 16 канальных буферов, каждый объемом 2 Кбит. За одно обращение к матрице выполняется параллельная передача 2 Кбит данных между одним из буферов и сегментом выбранной строки. Это «тыловой» обмен реализуют команды PRF (Prefetch — чтение массива в буфер) и RST (Restore — сохранение буфера в массиве), в которых микросхеме указывается номер банка, номер сегмента и номер канала. Предварительно командой ACT должна быть активирована требуемая строка матрицы (при подаче этой команды задается банк и адрес строки). Деактивация строк (предварительный заряд) может быть автоматической, сразу после выполнения обращений к массиву (для этого имеются специальные команды предвыборки и сохранения — PRFA и RSTA) или же по специальным командам, деактивирующим выбранный банк или оба банка сразу.
«Фасадный» обмен с канальными буферами выполняется по командам чтения и записи (READ и WRITE), в которых указывается номер канала и часть адреса, соответствующая адресу колонки в обычной микросхеме DRAM или SDRAM. Этот обмен выполняется в пакетном режиме, длина пакета программируется (1,2,4,8 или 16 передач), но пакет может быть укорочен подачей следующей команды обращения к каналу. Первые данные при чтении канала появляются с задержкой (Read Latency) в 2 такта относительно команды чтения, следующие идут в каждом такте. В некоторых моделях микросхем имеется поддержка комбинированной команды PFR (перед которой тоже должна быть команда ACT) — предвыборка с автопредзарядом и чтение буфера. После подачи этой команды первые данные появляются на 4-м такте — не раньше и не позже, чем при последовательной подаче команд PRF(А) и READ.
Регенерация VC DRAM выполняется так же, как и в SDRAM, — либо периодической подачей команд REF (авторегенерация по внутреннему счетчику адреса регенерируемых строк), либо в энергосберегающем режиме саморегенерации, в который микросхемы переходят по команде SELF.
Как видно из этого описания, работа VC DRAM очень похожа на работу SDRAM, но операции обмена данными разделены на две сравнительно независимые фазы. Активация-деактивация банков выглядит так же, но при чтении VC DRAM данные появляются даже позже, чем в SDRAM: у SDRAM эта задержка, CL (CAS Latency), составляет 2–3 такта, а у VC DRAM — 4 такта. Тем не менее применение VC DRAM дает прирост производительности памяти почти по всем тестам. Этот выигрыш получается за счет поддержки многозадачности в самих микросхемах и в контроллере памяти. Для работы с VC DRAM контроллер памяти должен «знать» ее систему команд, не имеющую прямой совместимости с командами SDRAM. Поддержка VC DRAM имеется далеко не во всех чипсетах — ее вводят, например, VIA и SiS, но фирма Intel эту память игнорирует. Механически и электрически модули VC DRAM совместимы с обычными модулями DRAM. Во время начального тестирования (POST) модули VC DRAM могут быть опознаны по информации, хранящейся в микросхеме EEPROM последовательной идентификации модуля, либо по поведению после инициализации.
Память VC DRAM по сравнению с другими типами динамической памяти обеспечивает меньшее среднее время задержки данных в многозадачных системах. Однако по пиковой скорости передачи она не имеет преимуществ перед SDRAM и проигрывает RDRAM и DDR SDRAM.
7.1.5. Модули динамической памяти
Динамическая память чаще всего применяется в виде модулей с разрядностью 1, 2, 4 или 8 байт, которые могут устанавливаться пользователем без каких-либо приспособлений. Модули стандартизованы, поэтому обеспечивается взаимная совместимость.
♦ SIPP и SIMM-30 — самые первые модули с однобайтной организацией, применялись вплоть до 486-х процессоров.
♦ SIMM-72-pin — 4-байтные модули, применявшиеся на системных платах для 486 и Pentium.
♦ DIMM-168 — 8-байтные модули для Pentium и выше. Существует два поколения, существенно различных по интерфейсу. Модули DIMM 168-pin Buffered (1-го поколения), как и слоты для них, встречаются редко и с широко распространенными модулями DIMM 2-го поколения несовместимы даже механически (по ключам). Наиболее популярно второе поколение с микросхемами SDRAM. Различают модификации в зависимости от наличия буферов или регистров на управляющих сигналах: Unbuffered, Buffered и Registered.
♦ DIMM-184 — 8-байтные модули DDR SDRAM для системных плат 6–7 поколений процессоров.
♦ RIMM — 2-байтные модули RDRAM для системных плат 6–7 поколений процессоров.
♦ SO DIMM (72 и 144-pin) и SO RIMM — малогабаритные варианты модулей (для блокнотных ПК).
- Защита компьютера на 100%: cбои, ошибки и вирусы - Петр Ташков - Компьютерное "железо"
- Время — деньги. Создание команды разработчиков программного обеспечения - Эд Салливан - Деловая литература
- Шлюпка. Устройство и управление - Л. Иванов - Техническая литература
- Формирование технологии разработки и принятия предпринимательских решений - Д. Кенина - Управление, подбор персонала
- Язык программирования C++. Пятое издание - Стенли Липпман - Программирование