Большая Советская Энциклопедия (ФИ) - БСЭ БСЭ
- Дата:20.06.2024
- Категория: Справочная литература / Энциклопедии
- Название: Большая Советская Энциклопедия (ФИ)
- Автор: БСЭ БСЭ
- Просмотров:2
- Комментариев:0
Шрифт:
Интервал:
Закладка:
Л. Г. Исаченко.
Физико-технический институт
Фи'зико-техни'ческий институ'т имени А. Ф. Иоффе АН СССР (ФТИ), научно-исследовательское учреждение, в котором ведутся исследования в области физики и её технических применений. Создан в 1921 на базе Физико-технического отдела Рентгенологического и радиологического института, организованного в 1918; находится в Ленинграде. Основателем и первым директором ФТИ был академик А. Ф. Иоффе, в 1957 директором стал академик Б. П. Константинов, с 1967 институт возглавляет академик В. М. Тучкевич. С первых лет существования ФТИ стал школой сов. физиков; здесь начинали свою деятельность и работали многие годы известные учёные, в том числе академики А. П. Александров, Л. А. Арцимович, Л. И. Алиханов, Б. М. Вул, И. К. Кикоин, Ю. Б. Кобзарев, В. Н. Кондратьев, Б. П. Константинов, Г. В. Курдюмов, И. В. Курчатов, П. И. Лукирский, Н. Н. Семенов, Д. В. Скобельцын, Г. Н. Флёров, Ю. Б. Харитон, А. А. Чернышев и члены-корреспонденты АН СССР А. И. Алиханьян, А. Ф. Вальтер, П. П. Кобеко, Д. А. Рожанский, А. В. Степанов, Я. И. Френкель, А. И. Шальников. В настящее время (1976) в ФТИ работают академик С. Н. Журков, члены-корреспонденты АН СССР Ж. И. Алферов, Г. А. Гринберг, Б. П. Захарченя, Г. А. Смоленский. Традиционные направления работ ФТИ – физика твёрдого тела, физика полупроводников и ядерная физика. Сотрудниками института было выяснено влияние дефектов на прочностные свойства материалов, развито представление о микроскопической модели реальных кристаллов и конденсированного состояния вообще. С начала 30-х гг. проводятся систематические исследования по изучению свойств полупроводников, получению полупроводниковых материалов и разработке их технических применений; в это же время была построена теория выпрямления, изучены меднозакисные и селеновые выпрямители. В 40-х гг. получены первые в СССР плоскостные транзисторы. Разработанные в ФТИ тиристоры послужили основой для создания новой отрасли промышленности – силовой полупроводниковой электроники. Исследование гетеропереходов привело к построению на их основе гетеролазеров и др. приборов квантовой электроники . Работы в области ядерной физики были начаты в 1932 (создана электрокапиллярная теория деления тяжёлых ядер, открыты явления ядерной изомерии радиоактивных элементов и спонтанного распада ядер урана).
Наряду с традиционными в ФТИ успешно развиваются многие др. направления исследований: физика плазмы (диагностика плазмы, методы её нагрева и удержания), физическая газодинамика, астрофизика (физика Солнца, рентгеновская и гамма-астрономия, физика космических лучей), голография и оптоэлектроника, теоретическая и математическая физика, вычислительная техника, эмиссионная электроника и масс-спектроскопия.
На базе ФТИ создано более 10 научно-исследовательских институтов, в том числе институт химической физики АН СССР, Физико-технический институт АН УССР (Харьков), Ленинградский институт ядерной физики АН СССР, институт физики металлов АН СССР. Награжден орденом Ленина (1967).
Лит.: Физико-технический институт, Л., 1968; Френкель В. Я., Пятьдесят лет Физико-техническому институту им. А. Ф. Иоффе АН СССР, «Успехи физических наук», 1968, т. 96, в. 3.
В. Я. Френкель.
Физико-химическая механика
Фи'зико-хими'ческая меха'ника, раздел современной коллоидной химии , изучающий зависимость структурно-механических свойств дисперсных систем и материалов от физико-химических явлений на поверхностях раздела фаз (поверхностных явлений ). Ф.-х. м. возникла в 30–40-х гг. 20 в. и оформилась как самостоятельная научная дисциплина в 50-х гг. преимущественно благодаря работам сов. учёных, прежде всего П. А. Ребиндера . Ф.-х. м. тесно связана с др. областями коллоидной химии (учением о поверхностных явлениях и поверхностных силах, физико-химией адсорбции и поверхностно-активных веществ , исследованиями устойчивости дисперсных систем, молекулярно-кинетических, оптических, электрических свойств дисперсных систем), а также с молекулярной физикой , физикой и физико-химией реального твёрдого тела, физико-химией полимерных материалов, реологией , механохимией, с рядом разделов геологических и биологических наук.
Объекты изучения Ф.-х. м. – природные дисперсные системы (горные породы и почвы, ткани растений и животных), дисперсные системы в различных технологических процессах (порошки , пасты , суспензии , например промывочные растворы для бурения, эмульсии , смазочно-охлаждающие жидкости ) и разнообразные материалы, используемые в промышленности (инструментальные, конструкционные, строительные) и в быту. Ф.-х. м. рассматривает характерное для этих систем и материалов гетерогенное макро- или микронеоднородное строение, в котором проявляется универсальность дисперсного состояния вещества. Такие системы и материалы состоят из связанных между собой частиц (глобул, зёрен, волокон и др.), весьма разнообразных по размерам, но существенно превышающих размеры отдельных молекул и сохраняющих все основные физико-химические, в том числе механические, свойства данного вещества.
Ф.-х. м. различает следующие основные типы пространственных структур, образуемых частицами, в различных физико-химических условиях. Коагуляционные структуры, в которых взаимодействие частиц ограничивается их соприкосновением – непосредственным (например, в сыпучих структурах) или через остаточные слои дисперсионной среды (в суспензиях и пастах); при этом сила сцепления в контакте (прочность) не превосходит обычно 10-8 –10-7 н (10-3 –10-2 дин ). Для таких структур характерна механическая обратимость, обусловливающая, в частности, их тиксотропию . Структуры с фазовыми контактами, развитыми на площади, значительно превосходящей молекулярные размеры. Эти структуры, как правило, механически необратимы, прочность контактов в них 10-7 –10-6 н (10-2 –10-1 дин ) и выше. Фазовые контакты развиваются в различных неорганических и органических, кристаллических и аморфных дисперсных системах и материалах при спекании, прессовании, изотермической перегонке, а также при выделении новой, высокодисперсной фазы в пересыщенных растворах и расплавах, например в минеральных вяжущих и полимерных материалах; сплошные материалы, в частности металлы и сплавы, можно рассматривать как предельный случай полного срастания зёрен. Каждая структура характеризуется определённой дисперсностью: размером частиц и, следовательно, числом контактов на 1 см 2 сечения, которое составляет, например, 102 –103 для порошков с частицами в десятые доли мм и достигает 1011 –1012 для таких высокодисперсных систем, как алюмосиликагели. Ф.-х. м. рассматривает механические (реологические) свойства – наиболее общие и важные характеристики всех дисперсных систем и материалов в зависимости от их структуры, обусловленной взаимодействием частиц; таковы вязкость, пластичность, тиксотропное поведение коагуляционных структур с определённой зависимостью сопротивления сдвигу от скорости течения, упруго-пластическое и упруго-хрупкое поведение твердообразных дисперсных систем и материалов (с фазовыми контактами), характеризующихся определённой прочностью, долговечностью, износостойкостью. Так, в простом случае глобулярной пористой монодисперсной структуры прочность может быть приблизительно равна произведению числа контактов между частицами (на 1 см 2 и средней величины силы сцепления в отдельном контакте, изменяясь в зависимости от типа контактов и дисперсности в очень широких пределах (например, от 10 до 108 н/м 2 .
Вместе с тем Ф.-х. м. устанавливает определяющую роль физико-химических явлений на границах раздела фаз (смачивание, адгезия, адсорбция, изменение величины межфазного натяжения, образование особых граничных слоев) во всех процессах взаимодействия частиц и структурообразования. На этой основе Ф.-х. м. развивает свои ведущие представления о возможности и эффективности управления структурно-механическими свойствами дисперсных систем и материалов при оптимальном сочетании механических воздействий (например, вибрационных, импульсных) и физико-химических факторов, прежде всего состава среды и малых добавок поверхностно-активных веществ. Последние, концентрируясь на границах раздела (адсорбируясь на поверхности частиц), позволяют при правильном их выборе радикально изменять свойства данной границы в нужном направлении, обеспечивая хорошее сцепление частиц, либо, наоборот, ослабляя и преодолевая силы сцепления. Так, в лиофобных системах (стеклянные частицы в углеводородных средах, гидрофобизованные поверхности в полярных жидкостях и др.) свободная энергия достигает в коагуляционных контактах десятков эрг/см 2 , а в лиофильных системах (например, гидрофобизованные монослоями поверхностно-активных веществ полярные частицы в углеводородной среде) составляет сотые доли эрг/см 2 .
- Древний рим — история и повседневность - Георгий Кнабе - История
- Исцеляющая сила растений. Чудо-травы от всех болезней - Лариса Николаевна Мелик - Альтернативная медицина
- Большая Советская Энциклопедия (ИМ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ИБ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ЦЮ) - БСЭ БСЭ - Энциклопедии