Большая Советская Энциклопедия (МО) - БСЭ БСЭ
- Дата:20.06.2024
- Категория: Справочная литература / Энциклопедии
- Название: Большая Советская Энциклопедия (МО)
- Автор: БСЭ БСЭ
- Просмотров:1
- Комментариев:0
Шрифт:
Интервал:
Закладка:
Аналоговое М. применяется для расчётов при таких схемах замещения, для которых нет надобности проводить проверку их физической адекватности реальной системе, но необходимо исследовать влияние изменения отдельных параметров элементов и начальных условий процессов в значительном диапазоне.
Математическое М. энергосистем практически реализуется составлением приспособленной для решения на ЦВМ системы уравнений, представленных в виде алгоритмов и программ, с помощью которых на ЦВМ получают численные характеристики процессов (в виде графика или таблицы), происходящих в изучаемой энергосистеме.
Математическое М. энергосистем широко применяется в проектных и эксплуатационных расчётах, оперирующих с заданными параметрами, изменяемыми при изучении конкурирующих вариантов, что особенно важно при технико-экономическом анализе, оптимизации, распределении токов, мощностей и напряжений в сложных энергосистемах. Отсутствие физической наглядности в получаемых результатах заставляет особенно остро ставить вопрос о соответствии расчётов и действительности, т. е. об апробации составленных программ. Для выполнения программ, по которым ведутся расчёты энергосистем на ЦВМ, наиболее удобным является алгоритмический язык фортран , применяемый в мировой энергетической практике.
Лит.: Тетельбаум И. М., Электрическое моделирование, М., 1959; Азарьев Д. И., Математическое моделирование электрических систем, М. — Л., 1962; Горушкин В. И., Выполнение энергетических расчетов с помощью вычислительных машин, М., 1962; Вопросы теории и применения математического моделирования, М., 1965; Применение аналоговых вычислительных машин в энергетических системах, 2 изд., М., 1970.
В. А. Веников.
Моделирование химических реакторов применяется для предсказания результатов протекания химико-технологических процессов при заданных условиях в аппаратах любого размера. Попытки осуществить масштабный переход от реактора малого размера к промышленному реактору при помощи физического М. оказались безуспешными из-за несовместимости условий подобия химических и физических составляющих процесса (влияние физических факторов на скорость химического превращения в реакторах разного размера существенно различно). Поэтому для масштабного перехода преимущественно использовались эмпирические методы: процессы исследовались в последовательно увеличивающихся реакторах (лабораторная, укрупнённая, опытная, полупромышленная установки, промышленный реактор).
Исследовать реактор в целом и осуществить масштабный переход позволило математическое М. Процесс в реакторе складывается из большого числа химических и физических взаимодействий на различных структурных уровнях — молекула, макрообласть, элемент реактора, реактор. В соответствии со структурными уровнями процесса строится многоступенчатая математическая модель реактора. Первому уровню (собственно химическому превращению) соответствует кинетическая модель, уравнения которой описывают зависимость скорости реакции от концентрации реагирующих веществ, температуры и давления во всей области их изменений, охватывающей практические условия проведения процесса. Характер следующих структурных уровней зависит от типа реактора. Например, для реактора с неподвижным слоем катализатора второй уровень — процесс, протекающий на одном зерне катализатора, когда существенны перенос вещества и перенос тепла в пористом зерне. Каждый последующий структурный уровень включает все предыдущие как составные части, например математическое описание процесса на одном зерне катализатора включает как уравнения переноса, так и кинетические. Модель третьего уровня включает, кроме того, уравнения переноса вещества, тепла и импульса в слое катализатора и т. д. Модели реакторов других типов (с псевдосжиженным слоем, колонного типа с суспендированным катализатором и др.) также имеют иерархическую структуру.
С помощью математического М. выбираются оптимальные условия проведения процесса, определяются необходимое количество катализатора, размеры и форма реактора, параметрическая чувствительность процесса к начальным и краевым условиям, переходные режимы, а также исследуется устойчивость процесса. В ряде случаев сначала проводится теоретическая оптимизация — определяются оптимальные условия, при которых выход полезного продукта наибольший, независимо от того, смогут ли они быть осуществлены, а затем, на втором этапе, выбирается инженерное решение, позволяющее наилучшим образом приблизиться к теоретическому оптимальному режиму с учётом экономических и других показателей. Для осуществления найденных режимов и нормальной работы реактора необходимо обеспечить равномерное распределение реакционной смеси по сечению реактора и полноту смешения потоков, различающихся составом и температурой. Эти задачи решаются физическим (аэрогидродинамическим) М. выбранной конструкции реактора.
М. Г. Слинько.
Моделирование аналоговое
Модели'рование ана'логовое, один из важнейших видов моделирования , основанный на аналогии (в более точных терминах — изоморфизме ) явлений, имеющих различную физическую природу, но описываемых одинаковыми математическими (дифференциальными, алгебраическими или какими-либо другими) уравнениями.
Простой пример — две системы, первая из которых имеющая механическую природу, состоит из оси, передающей вращение через пружину и маховик, погруженный частично в вязкую тормозящую жидкость, валу, жестко связанному с маховиком. Вторая система — электрическая — состоит из источника электродвижущей силы, соединённого через катушку индуктивности, конденсатор и активное сопротивление со счётчиком электрической энергии. Если подобрать значения индуктивности, ёмкости и сопротивления так, чтобы они определённым образом соответствовали упругости пружины, инерции маховика и трению жидкости, то эти системы обнаружат структурное и функциональное сходство (даже тождество), выражаемое, в частности, в том, что они будут описываться одним и тем же дифференциальным уравнением с постоянными коэффициентами вида
Это уравнение может служить «теоретической моделью» обеих систем, любая же из них — «экспериментальной моделью» этого уравнения и «аналоговой моделью» друг друга. Эта аналогия лежит в основе электрического моделирования механических систем: электрические модели гораздо более удобны для экспериментального исследования, нежели моделируемые механические. Другой традиционной областью применения М. а. является исследование процессов теплопроводности , основанное на электротепловой и гидротепловой аналогиях (в первой из них аналогами температурного поля в твёрдом теле и теплоёмкости служат соответственно поле электрического потенциала в электропроводной среде и ёмкости некоторых конденсаторов, во второй — температура моделируется уровнем воды в вертикальных стеклянных сосудах, образующих гидравлическую модель, теплоёмкость элементарного объёма — площадью поперечного сечения этих сосудов, а тепловое сопротивление — гидравлическим сопротивлением соединяющих сосуды трубок). Для исследования лучистого (радиационного) переноса тепла часто применяют метод светового моделирования, при котором потоки теплового излучения заменяют подобными им потоками излучения светового. Таким путём определяют угловые коэффициенты излучения, а если оптические свойства (степень черноты и поглощательные способности) соответствующих поверхностей у модели и натуры тождественны, то и распределение тепловых потоков по поверхностям, входящим в систему лучистого теплообмена.
До создания цифровых электронных вычислительных машин в конце 1940-х гг. М. а. было основным способом «предметно-математического моделирования» (см. об этом в ст. Моделирование ) многих процессов, связанных с распространением электромагнитных и звуковых волн, диффузии газов и жидкостей, движения и фильтрации жидкостей в пористых средах, кручения стержней и др. (в связи с чем его часто называли тогда просто «математическим моделированием»), причём для каждой конкретной задачи моделирования строилась своя «сеточная» модель (основными её элементами служили соединённые в плоскую сеточную схему электрические сопротивления различных видов), а аналоговые вычислительные машины позволяли проводить М. а. целых классов однородных задач. В настоящее время значение М. а. значительно уменьшилось, поскольку моделирование на ЭВМ имеет большие преимущества перед ним в отношении точности моделирования и универсальности. В достаточно фиксированных и специальных задачах свои преимущества (простота, а тем самым и дешевизна технического выполнения) имеет и М. а. Употребительно также и совместное использование обоих методов (см. Гибридная вычислительная система ).
- По Кубе с Константином Тублиным. Авторский путеводитель - Константин Тублин - Гиды, путеводители
- Два огня (СИ) - Хоб Дарья - Современные любовные романы
- Большая Советская Энциклопедия (ИМ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ИБ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ЦЮ) - БСЭ БСЭ - Энциклопедии