Интернет-журнал 'Домашняя лаборатория', 2007 №6 - Усманов
0/0

Интернет-журнал 'Домашняя лаборатория', 2007 №6 - Усманов

Уважаемые читатели!
Тут можно читать бесплатно Интернет-журнал 'Домашняя лаборатория', 2007 №6 - Усманов. Жанр: Газеты и журналы / Сделай сам / Хобби и ремесла. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Интернет-журнал 'Домашняя лаборатория', 2007 №6 - Усманов:
Большой и увлекательный, научно-прикладной и образовательный, но некоммерческий интернет-журнал, созданный группой энтузиастов. Интернет-журнал содержит материалы, найденные в Интернет или написанные для Интернет. Основная тематика статей — то, что можно сделать самому, от садовых поделок до сверхпроводников, но есть и просто полезные материалы.
Читем онлайн Интернет-журнал 'Домашняя лаборатория', 2007 №6 - Усманов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 125 126 127 128 129 130 131 132 133 ... 361
к рентгенограмме. Этим обстоятельством мы и пользовались.

— Вот эта структура кажется мне весьма логичной, произведите, пожалуйста, расчет рентгенограммы, — прошу я сотрудника.

На следующий день сопоставляем полученный расчет с опытными данными.

— Ничего похожего! — с нескрываемым удовольствием говорит коллега. — Я ведь говорил, что этот атом кристалла надо посадить вот сюда.

— Посадите, — говорю я мрачно.

Так, внося небольшие изменения в рисунок «обоев» (подвинув мяч, изменив форму кудряшек, удлинив платьице) и сравнивая расчеты с опытом, пытаемся приблизиться к истине. Действуя этим методом, который англичане назвали образно методом «проб и ошибок», в конце концов добиваемся удовлетворительного совпадения расчетов с опытом. Минусов в такой работе два, и значительных. Во-первых, даже мало-мальски сложные случаи требуют колоссальных расчетов. Во-вторых, все время остается сомнение, что есть и другие решения, которые не хуже сходятся с опытом, но остались нами не замеченными.

Было придумано множество математических ухищрений, которые облегчали задачи. Но довольно долгое время проблема казалась почти неразрешенной. Значительный шаг вперед был сделан в середине тридцатых годов. Теоретически было показано, что уравнения решаются более или менее достоверно в нужную нам сторону (от рентгенограммы к структуре) в случае, если исследуемая молекула содержит один тяжелый атом, и тогда проблему «квадратного корня» удается обойти. Но что делать, если интересующая нас органическая молекула не содержит таких атомов? Ввести?! Химики, если захотят, легко могут провести эту операцию. Но вводить такой атом надо умело, чтобы не испортить вид молекулы.

В разных случаях это приходится делать по-разному: один раз тяжелый атом-метку выгодно крепить в одном месте молекулы, другой раз — в другом. Так получаются «меченые» вещества, которые обычно и решают задачу.

Метод «тяжелого атома» и метод «проб и ошибок» могут применяться совместно. Первый подсказывает исследователю-структурщику, какие модели молекул имеет смысл пробовать, а второй — позволяет ему более уверенно угадывать знаки квадратных корней.

Метод «тяжелого атома» довольно простой и автоматичный, и его выполнение может быть легко запрограммировано для электронно-вычислительной машины. Но у него есть и недостаток — он не нагляден. Второй метод более творческий, требует хорошего знания всех закономерностей, наличия развитой интуиции и использует для наглядности модели. Кроме того, они по силам бедной лаборатории, не имеющей еще ЭВМ.

Не приходится удивляться, что среди представителей класса структурщиков — в настоящее время их число во всем мире наверняка перевалило за десяток тысяч в зависимости от способностей, темперамента и характера мы находим как сторонников игры на моделях, то есть любителей «угадать» структуру, так и лиц, полагающих необходимым следовать некоторой строгой процедуре, не содержащей в себе произвольных выдумок.

Сказать, какой из этих двух характеров «лучше», разумеется, нельзя. Можно привести примеры великолепных успехов, достигнутых на обеих дорогах. Превосходной иллюстрацией могут быть как раз работы по изучению структуры биологических веществ. Нобелевская премия за первое определение структуры белковой молекулы была присуждена Максу Перутцу, который потратил почти четверть века на расшифровку рентгенограмм различных производных белка, помеченных тяжелыми атомами. И та же Нобелевская премия за открытие структуры гена была дана Уотсону и Крику, которые достигли успеха, угадав структуру, играя на моделях.

ЕСТЬ ЛИ У НАУКИ ИСТОРИЯ?

Каждое открытие в науке есть результат слияния множества логических линий, опытных исследований и теоретического мышления. Я представляю себе историю науки в виде огромного листа белой бумаги, по которому невидимые руки чертят одновременно сотни, тысячи кривых, прямых, зигзагообразных, ломаных, всяких линий, и каждая из них, несмотря на повороты, упрямо следует своему направлению. Потом какие-то две линии встречаются, затем к ним прибавляется третья, четвертая, так постепенно создается тот мощный поток, который несет в себе весь опыт и всю мудрость знания, которое и есть Наука.

Слияние линий дает открытие. Оно неизбежно, и момент его в небольшой степени случаен. Оглядываясь назад, мы поражаемся тому бесконечному числу тоненьких ручейков, без которых было бы невозможно решающее пересечение.

Прослеживая ход всех линий, берущих свое начало в глубине веков, при желании можно перекинуть мост от законов Ньютона и Менделеева к открытию молекулярного строения гена. Но такие рассуждения могут показаться формальными. Чтобы получить яркую картину рождения открытия, достаточно включить в круг внимания несколько поколений его предков. Так, к ответу на вопрос, что такое ген, привели вот какие линии: развитие метода дифракции рентгеновских лучей; развитие представлений о пространственном строении молекул и кристаллов (впрочем, тесно переплетающихся с прогрессом рентгеноструктурного анализа); развитие биохимических исследований строения составных частей живой клетки, прогресс описательной генетики.

Свидетелем и участником самых первых шагов науки в области применения дифракции рентгеновских лучей к изучению строения органического вещества был я сам. Эта важнейшая часть истории интересующего нас открытия началась в тридцатых годах. Да, всего лишь каких-нибудь тридцать-сорок лет тому назад. Получается так, что человек лет пятидесяти с небольшим хвостиком, по заверениям геронтологов только что покинувший период юности, который длится до пятидесяти лет (зрелый возраст — сообщаю для сведения молодых читателей, которым сорокалетние кажутся дряхлыми старцами, — длится от пятидесяти до семидесяти лет, после чего наступает старость, которая длится сколько бог даст), может писать историю науки.

На первый взгляд это может показаться странным. Но только на первый взгляд. Небольшой экскурс в статистику поможет понять, в чем тут дело.

Социологи, изучающие так называемый прогресс общества, характеризуют его временем удваивания. Оказывается, самые различные события, такие, как число технических изобретений и число автомобильных катастроф, число новых городов и количество людей, умирающих от инфаркта, число научных работников и расходы на вооружения — все это может быть изображено кривыми геометрической прогрессии. А свойство прогрессии, как известно еще со школьной скамьи, состоит в том, что имеется возможность характеризовать рост, происходящий в геометрической прогрессии, временем удваивания. Времена удваивания населения, научных работников, телевизоров, мощности взрыва бомб, энергии электронов, достигаемой в ускорителях, числа разводов, числа сочиненных стихотворений и так далее и тому подобное, разумеется, резко отличаются друг от друга. Одни параметры растут медленно, другие уменьшаются, третьи растут быстро.

Однако замечательным является то обстоятельство, что время удваивания сохраняется одним и тем же во все времена, насколько нам удается заглянуть в глубь истории. Можно составить таблицы времен удваивания для разных стран, можно это делать для мира в целом.

Нижеследующие числа относятся ко всему миру, а значит, носят весьма усредненный характер.

Население, рабочая сила, число университетов удваивается за 50 лет.

Число важных открытий, точность инструментов, число учащихся на тысячу человек населения удваивается за 20 лет.

Число научных статей, число ученых со степенями удваивается за 15 лет.

Число телефонов, число инженеров, скорость транспорта удваивается за

1 ... 125 126 127 128 129 130 131 132 133 ... 361
На этой странице вы можете бесплатно читать книгу Интернет-журнал 'Домашняя лаборатория', 2007 №6 - Усманов бесплатно.

Оставить комментарий

Рейтинговые книги