Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей - Александр Панчин
0/0

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей - Александр Панчин

Уважаемые читатели!
Тут можно читать бесплатно Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей - Александр Панчин. Жанр: Прочая научная литература. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей - Александр Панчин:
“Сумма биотехнологии” Александра Панчина – это увлекательный научно-популярный рассказ о генетически модифицированных организмах (ГМО), их безопасности и методах создания, а также о других биотехнологиях, которые оказались в центре общественных дискуссий. Из книги вы узнаете все самое интересное о чтении молекул ДНК, возможности клонирования человека, создании химер, искусственном оплодотворении и генетической диагностике, о современных методах лечения наследственных заболеваний с помощью генной терапии, о перспективах продления человеческой жизни и победы над старением. В то же время в книге подробно разобраны популярные в обществе мифы, связанные с внедрением биотехнологий в практику, и причины возникновения ложных опасений.

Аудиокнига "Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей"



📚 Эта аудиокнига - настоящий кладезь знаний о биотехнологии и генетической модификации. В ней Александр Панчин раскрывает все тонкости и преимущества использования биотехнологии в современном мире. Он поможет разобраться в мифах и предрассудках, связанных с генетической модификацией растений, животных и даже людей.



🌱 Автор подробно рассматривает влияние биотехнологии на сельское хозяйство, экологию и медицину, а также дает рекомендации по использованию этих технологий в повседневной жизни. Эта аудиокнига станет незаменимым руководством для тех, кто хочет разобраться в современных технологиях и принять обоснованные решения.



Об авторе



👨‍🔬 Александр Панчин - известный биолог, специалист в области биотехнологии и генной инженерии. Он является автором множества научных статей и книг, посвященных современным технологиям и их влиянию на человечество.



🎧 На сайте knigi-online.info вы можете бесплатно и без регистрации слушать аудиокниги на русском языке. Мы собрали лучшие произведения различных жанров, чтобы каждый мог найти что-то по душе. Погрузитесь в мир знаний и фантазии вместе с нами!



Не упустите возможность расширить свой кругозор и узнать что-то новое. Слушайте аудиокниги, погружайтесь в увлекательные истории и обогащайте свой внутренний мир. Аудиокнига "Сумма биотехнологии" - это идеальный выбор для тех, кто стремится к самосовершенствованию и постижению новых знаний.



Прочая научная литература
Читем онлайн Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей - Александр Панчин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 34 35 36 37 38 39 40 41 42 ... 74

Прежде чем РНК-полимераза сможет начать синтез РНК какого-то гена в эукариотической клетке, с его промотором должно связаться множество белков, которые называются факторами транскрипции. В сущности, бактериальный белок-репрессор, о котором шла речь выше, – это тоже фактор транскрипции, просто у эукариот их много и они работают сообща. Разнообразие факторов транскрипции, способных узнавать разные участки ДНК, у эукариот очень велико. Одни промоторы используют одни факторы транскрипции, а другие – другие. В зависимости от условий, расположения и окружения клетки производят разные факторы транскрипции, поэтому у них работают разные гены, и это очень удобно для генного инженера.

Личинка колорадского жука питается листьями картошки. Есть ген бактерии, кодирующий токсичный для личинки белок. Мы можем перенести этот ген в геном картошки и поместить перед ним универсальный промотор, такой, чтобы он работал во всех клетках растения. Но зачем заставлять картошку тратить энергию и питательные вещества на производство этого белка там, где он не нужен, например в клубнях, которые вредители не едят? Мы можем узнать, какие гены работают исключительно в листьях картошки, и позаимствовать промоторы этих генов. Если поместить под такой промотор ген токсичного для вредителей белка и внедрить эту конструкцию в геном растения, мы добьемся того, что производиться наш белок будет только в листьях, но не в клубнях. Мы получаем гораздо более точный и экономный метод борьбы с вредителями.

Еще один важный механизм регуляции работы генов эукариот – РНК-интерференция. Изначально это явление было открыто у круглых червей Caenorhabditis elegans, но впоследствии оказалось, что оно присутствует повсеместно в клетках всевозможных эукариот. Молекула РНК, в отличие от ДНК, как правило, одноцепочечная. Не потому, что РНК не может образовывать двойную цепочку, а потому, что гены почти всегда читаются только в одну сторону. Поэтому комплементарных друг другу молекул РНК, способных соединиться вместе, почти не образуется. Однако двухцепочечная РНК встречается у некоторых вирусов, поэтому клетки с опаской относятся к таким молекулам и пытаются уничтожать все, что на них похоже.

Для этого клетки многих эукариот производят белок, который называется Dicer. Он способен распознавать длинные двухцепочечные молекулы РНК и разрезать их на короткие фрагменты длиной около двадцати нуклеотидов. Эти короткие двухцепочечные молекулы расплетаются, и если одна из цепочек захватывается комплексом, который называется RISC, то он, подобно полицейскому, ищущему преступников по отпечаткам пальцев, рыщет в поисках комплементарных захваченному РНК-фрагменту молекул РНК и разрезает их на части.

Система РНК-интерференции стала прекрасным методом для изучения работы генов и генной инженерии, так как она позволяет на время избирательно выключать гены, работающие в клетке. Технология получила название “нокдаун” – в противопоставление технологии нокаут, когда ген выключается навсегда в результате его удаления или повреждения мутациями.

Допустим, мы хотим узнать, что будет с круглым червем, если в нем временно выключить некий ген, который называется HIF-i. Предположим, мы ничего не знаем про этот ген, кроме его нуклеотидной последовательности. Мы можем синтезировать фрагменты РНК, совпадающие с какой-то частью РНК этого гена, и фрагменты, комплементарные им. Смешав эти два типа фрагментов, мы получим двухцепочечные молекулы РНК. Если мы вколем их круглому червю, RISC в его клетках решит, что это нападение вируса, и начнет разрушать все похожие последовательности РНК, то есть РНК гена HIF-i. Не будет РНК – не будет синтеза белка. Было показано, что круглый червь с подавленной работой гена HIF-i живет почти на 20 % дольше своих собратьев251.

Круглый червь оказался замечательным объектом для изучения РНК-интерференции, потому что двухцепочечная РНК очень легко распространялась по его телу от клетки к клетке. Было достаточно вколоть двухцепочечную РНК в какую-то часть животного или даже просто покормить его генетически модифицированными бактериями, производящими такую РНК, чтобы во всех клетках организма выключился интересующий нас ген. Не у всех многоклеточных организмов РНК-интерференция будет работать столь системно и эффективно. Тем не менее технология нашла применение для борьбы с некоторыми насекомыми-вредителями.

В 2015 году в журнале Science был описан новый генетически улучшенный сорт картошки, устойчивой к колорадскому жуку благодаря РНК-интерференции. Новый сорт не синтезирует никакого нового белка, но производит большое количество двухцепочечной РНК, соответствующей одному из жизненно важных генов колорадского жука150. Чтобы двухцепочечная РНК не была разрезана белком Dicer, который должен быть в любой клетке картошки, авторы работы пошли на хитрость. Они внедрили гены, производящие двухцепочечную РНК, не в ядерный геном картошки, а в геном хлоропластов. Хлоропласты, как и митохондрии, имеют свою ДНК и свою мембрану, и внутри хлоропластов механизм РНК-интерференции не работает.

А вот личинка колорадского жука, наевшись такой трансгенной картошки с двухцепочечной РНК, по полной получает РНК-интерференцию с блекджеком, Оквг’ом и RISC’ом, и гибнет из-за отключения жизненно важного гена. РНК-интерференция требует очень высокого уровня сходства между выключаемым геном и двухцепочечной молекулой РНК, поэтому можно создавать молекулы, которые действуют на единственный вид вредителей или на определенную их группу, не влияя на другие организмы.

Еще один важный результат использования РНК-интерференции в биотехнологии – создание деревьев с низким содержанием лигнинов и высоким содержанием целлюлозы. Лигнины придают дереву твердость и защищают его от вредителей, поэтому древесина с высоким содержанием таких полимеров используется для изготовления мебели. А вот для эффективного производства бумаги высокого качества полезно иметь деревья, в которых лигнинов минимальное количество, но много целлюлозы. Существуют ферменты, участвующие в выработке лигнинов в растениях252. ГМ деревья с подавленным синтезом одного из таких ферментов дают больше древесной массы, необходимой для производства высококачественной бумаги, то есть позволяют сделать процесс более дешевым и экологически чистым, ведь обычно лигнин приходится удалять при помощи довольно опасных для окружающей среды химических веществ.

Похожие подходы используются для создания гипоаллергенных продуктов, яблок, которые не темнеют на воздухе из-за сниженной активности окислительных ферментов, и так далее. А вообще РНК-интерференция применяется для снижения уровня синтеза тех или иных белков в ГМ растениях уже очень давно. Еще в 1988 году с ее помощью удалось сделать помидоры, которые остаются твердыми, хорошо переносят транспортировку и при этом не теряют вкуса. В них уменьшили содержание фермента, который разрушает клеточную стенку растительных клеток, приводя к размягчению плода253. Томатная паста с ГМ помидорами, разработанными британской компанией Zeneca, стала первым ГМ продуктом питания на рынке. Она продавалась с добровольной гордой маркировкой “сделано из генетически модифицированных помидоров!” и пользовалась огромной популярностью у покупателей, опережая многих конкурентов. Это длилось вплоть до 1999 года, когда истерия вокруг ГМО (подкрепленная некорректной публикацией Арпада Пуштаи) достигла таких масштабов, что продавать ГМ продукты стало очень невыгодно и этот товар, увы, исчез с полок магазинов. Сегодня на прилавках мы часто видим недозрелые помидоры, вкус которых принесен в жертву товарному виду.

Любопытно, что и при обычной селекции некоторые новые признаки культивируемых растений могут возникать из-за включения РНК-интерференции. Кожура бобов дикой сои имеет черный цвет из-за наличия в ней большого количества антоцианов. Селекционеры вывели сою с желто-коричневой кожурой. Отсутствие черного пигмента связано со спонтанной мутаций – инвертированным удвоением довольно большого участка ДНК, кодирующего ферменты254, необходимые для синтеза антоцианов255. В результате мутации синтезируются не только правильные молекулы РНК этих генов, но и комплементарные молекулы. При взаимодействии этих двух типов молекул образуются двухцепочечные РНК, возникает РНК-интерференция, и РНК обоих типов разрушаются. В результате мутация носит доминантный характер. Есть и другие аналогичные примеры256.

Теперь, когда мы знаем о некоторых правилах синтаксиса жизни, мы можем наконец поговорить о методах создания трансгенных организмов, не способных к размножению.

Первая технология самая простая и не основана на генной инженерии – создание стерильных гибридов. Если скрестить осла и лошадь, то получится мул, который с высокой вероятностью будет стерилен. Если скрестить гипотетическую трансгенную лошадь и осла, мы получим стерильного трансгенного мула. Аналогичный подход годится и для других организмов, в том числе для растений: две линии подбирают таким образом, чтобы их гибриды были стерильны. Делают одну или обе линии трансгенными. Эти трансгенные особи могут производить семена, но когда возникает необходимость получить стерильное потомство, две линии перекрестно скрещивают, получая гибриды, неспособные к половому размножению.

1 ... 34 35 36 37 38 39 40 41 42 ... 74
На этой странице вы можете бесплатно читать книгу Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей - Александр Панчин бесплатно.
Похожие на Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей - Александр Панчин книги

Оставить комментарий

Рейтинговые книги