Древо познания - Умберто Матурана
0/0

Древо познания - Умберто Матурана

Уважаемые читатели!
Тут можно читать бесплатно Древо познания - Умберто Матурана. Жанр: Прочая научная литература. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Древо познания - Умберто Матурана:
Авторы книги — известные во всем мире выдающиеся чилийские нейробиологи, предложившие в начале семидесятых годов радикально новую концепцию живых систем от (простейших до человека), их происхождения и взаимосвязей. Написанная живо и интересно, с блестящим педагогическим мастерством, книга «Древо познания» делает читателя участником становления новой междисциплинарной научной парадигмы, приобщает его к новым взглядам на язык и его роль в эволюции и человеческой коммуникации. В основе этой парадигмы лежит принцип: «Живые системы — это познающие системы, а жизни, — это процесс познания».Книга Франсиско X. Варелы и Умберто Р. Матураны "Древо познания" впервые увидевшая свет в конце 80-х годов, получила широкую международную известность в качестве интеллектуального бестселлера. Написанная первоклассными учеными, крупнейшими нейрофизиологами современности, она позволяет по-новому взглянуть на биологическую эволюцию и человеческое познание. Читатель знакомится с развитой авторами оригинальной концепцией аувтопоэза, занявшей центральное место в исследованиях современной психотерапии, стратегического менеджмента, процесса глобализации
Читем онлайн Древо познания - Умберто Матурана

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 15 16 17 18 19 20 21 22 23 ... 37

Рис. 39. Зависимость между размером и скоростью движения р природе измеренной по их максимальной скорости[10]. Нетрудно видеть, что самые большие и самые маленькие природные объекты — галактики и элементарные частицы — способны совершать очень быстрые движения со скоростями порядка тысяч километров в секунду. Если мы обратимся к большим молекулам, являющимся компонентами живых существ, то их движение замедляется по мере увеличения их размеров, к тому же движутся они в вязкой окружающей среде, образованной другими молекулами. Например, многие молекулы белков, входящие в состав живых организмов, настолько велики, что их спонтанное движение незначительно по сравнению с подвижностью молекул меньших размеров.

Именно при этих обстоятельствах (как было показано в гл. 2) возникают аутопоэзные системы; их появление становится возможным благодаря существованию многочисленных больших органических молекул. Как только образовалось много больших молекул, направление кривой резко изменяется, поскольку история клеточных преобразований приводит к возникновению таких структур, как жгутики или псевдоножки. С их помощью движение вновь заметно ускоряется, поскольку они вводят в игру силы, значительно превосходящие силы вязкости. Кроме того, когда возникают многоклеточные организмы, у некоторых из них (путем дифференциации клеток) развиваются гораздо более эффективные способности к передвижению в пространстве. Например, антилопа импала может бежать со скоростью многих километров в час, хотя сама импала гораздо крупнее, чем небольшая молекула, которая (в среднем) движется с такой же скоростью. Многоклеточные животные и подвижные одноклеточные организмы создают диапазон движений, в их размерном классе не имеющий равного в природе.

Однако не следует упускать из виду, что внешнее проявление этого типа движения не является ни универсальным, ни необходимым для всех форм живых существ. В частности, у растений, которые представляют собой одно из фундаментальных порождений естественной эволюции, движение как способ бытия по существу отсутствует. Предположительно это связано с тем, что растения поддерживают свое существование за счет фотосинтеза при условии постоянного локального поступления питательных веществ и воды из почвы, а также газов и света из атмосферы. Это позволяет им сохранять адаптацию, не нуждаясь в интенсивных или быстрых движениях в течение большей части своего онтогенеза.

Для наблюдателя очевидно, что движение открывает перед организмом многочисленные возможности. Многие из них реализуются вследствие естественного дрейфа организмов. Например, подвижные организмы основывают на движении не только размножение, но и питание и способы взаимодействия с окружающей средой. Именно в связи с такого рода живыми существами естественный дрейф привел к появлению подвижности, при которой важное значение приобретает нервная система. Рассмотрим это обстоятельство более подробно.

Сенсомоторная координация в одноклеточных организмах

Вернемся к амебе в тот момент, когда она собирается поглотить простейший организм. Что при этом происходит? Суть процесса сводится к следующему: присутствие простейшего создает в окружающей среде концентрацию определенных веществ. Эти вещества способны взаимодействовать с мембраной амебы, инициируя изменения в консистенции протоплазмы, что приводит к формированию ложноножки. В свою очередь ложноножка вызывает изменения в положении движущегося животного, тем самым изменяя число молекул окружающей среды, взаимодействующих с мембраной амебы. Этот цикл повторяется; таким образом, последовательность движений амебы является результатом сохранения внутренней корреляции между степенью изменения амебной мембраны и тех модификаций протоплазмы, которые мы наблюдаем в виде псевдоножек. Иначе говоря, между возмущенной или сенсорной поверхностью организма и ее участком, способным порождать движение (моторной поверхностью), устанавливается периодически возобновляемая или неизменная корреляция, которая поддерживает ряд внутренних соотношений в амебе.

Еще один пример поможет лучше понять, о чем идет речь. На рис. 40 вы видите простейшее животное, обладающее специальной структурой — жгутиком. С помощью этого жгутика простейшее может двигаться в жидкой среде. В рассматриваемом нами частном случае жгутик движется так, что тянет клетку за собой. Плавая, простейший организм время от времени наталкивается на препятствие. Что происходит в такой ситуации? Поведение одноклеточного, стремящегося изменить направление движения, весьма интересно: когда простейшее сталкивается с препятствием, его жгутик изгибается. Этот изгиб вызывает изменения в основании жгутика, погруженном вглубь клетки. В свою очередь, клетка производит изменения в цитоплазме, которые вынуждают жгутик повернуться, в результате чего следующим взмахом жгутик вынуждает клетку двигаться в другом направлении. Такой механизм позволяет простейшему животному, натолкнувшемуся на препятствие, повернуть и не врезаться в него. Как и в случае амебы, происходящее сводится к сохранению определенной внутренней корреляции между структурой, способной выдерживать некоторые возмущения (сенсорной поверхностью), и структурой, способной порождать движение (моторной поверхностью). В этом примере интересно то, что и сенсорной, и моторной поверхностью в действительности служит одна и та же поверхность, поэтому их связь осуществляется непосредственно. рис. 40. Сенсомоторная корреляция у простейших животных

Рассмотрим еще один пример такой связи между сенсорными и моторными поверхностями. Существуют одноклеточные бактерии с жгутиками, Hai юминаю-щими по внешнему виду жгутики некоторых простейших. Но, как видно из рис. 41, жгутики бактерии действуют совершенно иначе[11]. Они не «хлопают» из стороны в сторону; основание жгутиков остается неподвижным, а сами жгутики вращаются наподобие гребного винта, причем они могут вращаться как в одну, так и в другую сторону. Но если при вращении жгутиков в одну сторону координация вращений приводит к отчетливому движению бактерий, то при вращении в противоположную сторону бактерии просто толкутся на одном месте. Можно поместить бактерию под микроскоп и проследить за тем, что с ней происходит при различных контролируемых условиях. Например, если в среду, в которой находится бактерия, бросить где-нибудь в уголке крупинку сахара, то бактерия прекратит «топтание на месте», изменит направление вращения своего жгутика и направится в зону с наибольшей концентрацией сахара следуя по направлению градиента концентрации. Каким образом это происходит? Оказывается, в мембране бактерии имеются специальные молекулы, способные взаимодействовать с сахаром, поэтому, когда вблизи бактерии возникает разность концентрации, в ней происходят изменения; именно эти изменения и заставляют жгутик вращаться в другом направлении. Таким образом, в каждый момент времени между сенсорной поверхностью и моторной поверхностью клетки возникает устойчивая корреляция, которая и обусловливает четко выраженное дискри-минаторное поведение бактерии, которая неизменно устремляется в зоны более высокой концентрации некоторых веществ. Это явление известно под названием «хемотаксис» Оно служит примером поведения на одноклеточном уоовне, многие молекулярные детали которого известны.

В отличие от бактерий стрелолист, о котором мы упоминали выше, и другие растения не обладают моторной поверхностью, которая наделяла бы их способностью двигаться. Правда, и среди бактерий встречаются такие, которых можно рассматривать как своего рода компромисс между способностью и неспособностью двигаться Например, когда Caulobacter оказывается в очень влажной среде, она прикрепляется к почве с помощью пьедестала, напоминающего по внешнему виду растение. Но при обезвоживании бактерия репродуцируется, и новые клетки вырастают с жгутиком, который помогает им перебраться в более влажную среду.

Рис 41 Движение с помощью жгутиков у бактерий

Сенсомоторная корреляция у многоклеточных

На приведенных выше примерах мы видели, что движение (поведение) одноклеточных организмов основано на весьма специфической корреляции между их сенсорными поверхностями и их моторными поверхностями, ответственными за движение. Нам известно также, что эта корреляция обусловлена процессами, происходящими внутри клетки, т. е. метаболическими преобразованиями, присущими клеточному единству. А что происходит в случае многоклеточных организмов?

Рассмотри эту ситуацию также на примере. На рис. 42 вы видите гидру, вроде тех, что обитают во многих стоячих водоемах. Гидры — многоклеточные

1 ... 15 16 17 18 19 20 21 22 23 ... 37
На этой странице вы можете бесплатно читать книгу Древо познания - Умберто Матурана бесплатно.

Оставить комментарий

Рейтинговые книги