Математические головоломки профессора Стюарта - Иэн Стюарт
- Дата:20.06.2024
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Название: Математические головоломки профессора Стюарта
- Автор: Иэн Стюарт
- Просмотров:0
- Комментариев:0
Шрифт:
Интервал:
Закладка:
По прибытии в Даунингем-холл герцог Саутморленд – он приходился отцом эрлу Даунингему, который по освященной временем аристократической традиции пока носил один из не самых значимых титулов отца, – встретил нас лично и быстро провел на место похищения – к грязному истоптанному загону возле сарая.
– Мой сын пропал в какой-то момент ночью, – объявил он. По его внешности было ясно, как он потрясен происшедшим.
Сомс вытащил увеличительное стекло и несколько минут ползал вокруг, рассматривая истоптанную грязь. Время от времени он бормотал что-то себе под нос. Затем он вытащил из кармана рулетку и произвел несколько измерений в одном из углов сарая.
Проделав все это, Сомс поднялся на ноги.
– У меня есть почти все необходимые данные, – сказал он. – Мы должны вернуться в Лондон и найти последний недостающий фрагмент.
Оставив ошарашенного герцога стоять на собственном пороге рядом с равно ошарашенным инспектором, мы так и сделали.
– Но Сомс… – начал я, когда мы сели в поезд.
– Разве вы не заметили отпечатка колес? – раздраженно бросил он.
– Колес?
– Полиция затоптала все следы, как обычно, но кое-что все же осталось. Достаточно, чтобы я мог определить, что эрл отбыл на телеге, одно из колес которой плотно прижалось к углу сарая в том месте, где он примыкает к высокой стене. След глины на стене говорит о том, что некая точка на ободе колеса находилась одновременно в 8 дюймах от земли и в 9 дюймах от стены сарая. Если мы сможем вычислить диаметр колеса, то, может статься, окажемся близки к разрешению этого дела.
– Может статься?
– Это зависит от ответа. Мы должны также помнить, что у телег не бывает колес меньше 20 дюймов в диаметре. Так, дайте посмотреть… Ну да, все так, как я и подозревал.
По прибытии на вокзал Кингс-Кросс он вызвал одного из Нерушимых сил Бейкер-стрит – рядом с нами всегда крутился кто-нибудь из этих маленьких сорванцов – и отправил его на телеграф с посланием, которое нужно было отправить Роулейду.
– Что в телеграмме?
– Там сказано, где можно найти пропавшего эрла.
– Но…
– Я знаю только одну ферму в окрестностях Даунингем-холла, где есть телега с колесами, диаметр которых точно соответствует тому, что я вычислил, – это довольно большой диаметр для тележного колеса. Я убежден, что эрл покинул Даунингем-холл добровольно под покровом тьмы, а примитивной телегой воспользовался, чтобы не привлекать внимания. Он найдется в том месте, где обычно держат эту телегу.
На следующее утро миссис Сопсудс принесла телеграмму от инспектора: ЭРЛ Д ЦЕЛ И НЕВРЕДИМ МОИ ПОЗДРАВЛЕНИЯ РОУЛЕЙД.
– Так куда же уехал из дома эрл? – спросил я с любопытством.
– Эта тайна, Ватсап, могла бы разрушить репутацию нескольких в высшей степени уважаемых семейств Европы. Зато я могу сказать вам размер тележного колеса.
Какого диаметра было колесо? Ответ см. в главе «Загадки разгаданные».
Дважды два
Существует бесчисленное множество карикатур на тему Ноева ковчега. Мой любимый рисунок посвящен его биологическому аспекту. На ковчег по трапу заводят последние несколько пар животных – слонов, жирафов, обезьян. Ной что-то ищет вокруг, ползая на четвереньках. Его жена кричит, перегнувшись через борт: «Ной! Не ищи вторую амебу, обойдемся!»
Существуют и математические шутки на тему ковчега.
После того, как вода спала, Ной отпустил всех животных и велел им плодиться и размножаться. Примерно через год он решил проверить, как идут дела. Он отправился в путь и всюду встречал слонят, крольчат, козлят, детенышей крокодилов, жирафов, гиппопотамов и казуаров. Но затем он наткнулся на одинокую пару змей, которые выглядели потерянными.
– В чем проблема? – спросил Ной.
– Не можем размножаться, – ответила одна из змей. (Не забывайте, что наш Ной чем-то напоминает доктора Айболита и умеет разговаривать по-звериному.)
Разговор услышала пробегавшая по соседнему дереву обезьяна.
– Сруби несколько деревьев, Ной.
Ной ничего не понял, но сделал так, как посоветовала обезьяна. Еще через несколько месяцев он вновь посетил змей, и на этот раз его встретили многочисленные змееныши. В общем, все были счастливы.
– Ну хорошо, как же вам это удалось? – спросил Ной у змей.
– Мы – гадюки. Мы можем размножаться, только используя бревна.
Загадка гусиного клина
Не секрет, что стаи перелетных птиц в полете часто приобретают форму клина. Особенно привычны глазу клинья диких гусей, нередко состоящие из десятков и даже сотен птиц. Что заставляет их летать подобным строем?
Исследователи давно предположили, что такой строй в полете помогает сберечь энергию, позволяя птицам избегать турбулентного следа от крыльев тех, кто летит впереди, и недавние экспериментальные и теоретические исследования подтвердили, в общем и целом, эту точку зрения. Однако эта теория опирается на предположение о том, что птицы способны чувствовать воздушные течения и подстраивать свой полет соответственно, но до сих пор не ясно, могут ли они на самом деле это делать.
Есть и альтернативное объяснение. Оно состоит в том, что у стаи есть вожак – тот, что летит впереди, – и все остальные гуси просто следуют за лидером. Может быть, лидер лучше всех ориентируется – или просто знает, куда лететь. А может быть, первой в строю может оказаться любая птица.
Прежде чем перейти к ответу, необходимо разобраться в некоторых основных качествах птичьего полета. При устойчивом полете птица машет крыльями циклически, вверх-вниз. Вверх она поднимается за счет движения крыла вниз, когда воздушные завихрения уходят, вращаясь, от кромки крыла; движение вверх возвращает крыло на исходную позицию, чтобы цикл мог повториться. Длина цикла называется его периодом.
Предположим, две птицы машут крыльями с одинаковой периодичностью, как обычно и происходит в стае во время перелета. Однако, хотя крылья птиц движутся одинаково, это не означает, что одни и те же движения делаются одновременно. К примеру, в тот момент, когда одна из птиц ведет крыло вниз, другая, возможно, возвращает его вверх. Соотношение между движениями крыльев разных птиц называют относительной фазой – это доля цикла между тем моментом, когда одна из птиц начинает движение крылом вниз, и тем, когда то же движение начинает другая птица.
Благодаря замечательной, почти детективной, работе Стивена Португала и его группы мы теперь знаем, что теория энергосбережения верна и что птицы действительно чувствуют невидимые воздушные течения достаточно хорошо, чтобы подстраиваться под них. Серьезная проблема экспериментальных исследований состоит в том, что птицы, за которыми вы пытаетесь наблюдать, стремительно исчезают из виду вместе со всем закрепленным на них оборудованием.
И здесь на сцену выходит лысый ибис.
Когда-то лысых ибисов было так много, что древние египтяне даже использовали стилизованное изображение этой птицы в качестве иероглифа «ах», означающего «сиять». На сегодняшний день их уцелело всего несколько сотен, в основном в Марокко. В связи с этим в зоопарке Вены была начата программа по размножению этих птиц в неволе. Много усилий тратится на то, чтобы научить птиц правильным маршрутам миграции. Для этого их учат следовать за сверхлегким летательным аппаратом, который летает вдоль отдельных участков пути а также возвращается вместе с птицами на базу.
Португал понял, что, используя этот летательный аппарат, можно наилучшим образом измерить все параметры полета птиц, их положение в пространстве и характеристики движения крыла, ведь птицы при этом не исчезают за горизонтом с пугающей скоростью, а остаются все время рядом. То, что удалось обнаружить его группе, оказалось поразительно и элегантно. Каждая птица располагается позади и чуть в стороне от передней и так настраивает относительную фазу ударов крыльями, что может воспользоваться восходящим потоком, который создает вихрь из-под крыла впереди летящей птицы. При этом для того, чтобы эффективно воспользоваться восходящим движением воздуха, вторая птица должна не только попасть концом крыла в нужное место (а оно относительно невелико), но и точно настроить фазу движений крыльями.
На первый взгляд эта методика позволяет не только клиновидное построение в полете, но и зигзагообразное, при котором каждая птица летит сзади сбоку от предыдущей, но все вместе не образуют единого клина. (Каждая птица может выбирать, слева ей лететь от лидера или справа.) Однако в этом случае первая птица, нарушившая клиновидное построение, окажется прямо позади птицы, летящей на две позиции впереди нее. В этом месте воздух будет турбулентным из-за возмущения, производимого передней птицей, и попасть кончиком крыла в нужную точку – а значит, и воспользоваться подъемной силой – будет намного сложнее. Этой проблемы можно избежать, если каждая птица будет устраиваться обязательно с внешней стороны клина, где воздух ничем не возмущен.
- Том, Дик и Дебби Харри - Джессика Адамс - Современные любовные романы
- История и математика рука об руку. 50 математических задач для школьников на основе исторических событий. Древний Рим, Греция, Египет и Персия - Дмитрий Московец - История
- Чудесная ферма мистера Мак Брума - Сид Флейшмен - Прочая детская литература
- Хрустальный грот. Полые холмы (сборник) - Мэри Стюарт - Иностранное фэнтези
- Последний воздушный пират - Пол Стюарт - Детская фантастика