Цифровая стеганография - Вадим Грибунин
- Дата:20.06.2024
- Категория: Научные и научно-популярные книги / Техническая литература
- Название: Цифровая стеганография
- Автор: Вадим Грибунин
- Просмотров:4
- Комментариев:0
Шрифт:
Интервал:
Закладка:
Заметим, что в соответствии с теорией оптимального приема если нарушитель и законный получатель скрываемых сигналов обладают одинаковой способностью по их обнаружению на фоне шумов контейнера, то величина скрытой ПС стегоканала равна нулю. Следовательно, для существования необнаруживаемого стегоканала нарушитель и получатель скрываемых сигналов должны находиться в неравных условиях. Канал передачи стегограмм для них равнодоступен, следовательно, получатель должен иметь преимущество в знании секретной информации, позволяющей ему выделить из смеси скрываемый сигнал+контейнер предназначенное для него сообщение, а нарушитель без знания этой информацию не должен быть способен отличить стего от пустого контейнера. Более подробно защищенность стегоканала от его обнаружения будет исследована в следующей главе.
В работе [4] для оценки скрытой пропускной способности аддитивного стегоканала используются оценки пропускной способности канала с аддитивным гауссовским шумом, описанным К. Шенноном в классической работе [1].
Пусть по каналу передается полезный сигнал с мощностью S, а в канале на него воздействует гауссовский шум Z с мощностью N. Выход аддитивного канала можно представить как . Упрощенная схема такой системы передачи представлена на рис. 3.12.
Рис. 3.12. Упрощенная схема стегоканала
Для оценки величины скрытой пропускной способности аддитивного стеганографического канала сопоставим ее с величиной пропускной способности канала с аддитивным белым гауссовским шумом. Если входной сигнал М и шум Z независимы, то условная энтропия выходного сигнала Х при заданном М равна энтропии шумового сигнала. Используем этот результат для определения пропускной способности аддитивного канала с шумом
.
Пусть шум Z имеет нормальное распределение со средним значением 0 и дисперсией N. Тогда энтропия Z равна
.
Чтобы достичь максимума величины ПС по всем возможным распределениям входа, будем считать, что входной сигнал M имеет также нормальное распределение с дисперсией S. Следовательно, X есть сумма двух гауссовских сигналов и имеет дисперсию S + N. Тогда пропускная способность Сg гауссовского канала выражается, как
. (3.29)
Из теории связи известно [25], что величина ПС канала минимальна, когда шум в канале гауссовский со средним значением 0. Следовательно, пропускная способность других аддитивных негауссовских каналов ограничивается снизу величиной Сg (3.29). Уравнения (3.30) — (3.32) определяют пропускные способности трех таких каналов с различными распределениями шума.
, (3.30)
, (3.31)
. (3.32)
Рассмотрим стеганографическую систему, в которой скрываемая информация добавлена некоторым образом к контейнерным данным. Например, скрываемое сообщение записывается на место наименее значащих бит (НЗБ) яркости пикселов контейнерного изображения. Во многих практических стегосистемах скрываемое сообщение до встраивания шифруется или сжимается каким-либо архиватором данных. Это повышает скрытность связи и позволяет описать зашифрованное (сжатое) сообщение в виде последовательности с независимо и равновероятно распределенными битами.
Величину скрытой пропускной способности стегоканала оценим путем сравнения с пропускной способностью канала с белым гауссовским шумом. Однако в действительности сигналы реальных источников информации, таких как речь и видео, нельзя описать гауссовскими сигналами, потому что в их структуре высока зависимость между соседними отсчетами. Как и в других случаях негауссовских каналов, скрытая пропускная способность стегоканала, в котором скрываемые сообщения внедряются в негауссовские сигналы, ограничена снизу пропускной способностью канала с белым гауссовским шумом.
Неопределенность шума с произвольным распределением может быть сравнена с белым гауссовским шумом, используя измерение энтропийной мощности Ne. Если произвольный шум Z имеет энтропию Н(Z), то его средняя шумовая мощность равна мощности гауссовского шума, имеющего такую же энтропию и определяется как
. (3.33)
Объединяя (3.33) с оценкой пропускной способности канала с аддитивным шумом получим, что скрытая пропускная способность С стегоканала ограничена
.
где Ne — энтропийная мощность контейнера. Так как величина Ne строго меньше, чем N для всех негауссовских сигналов, то величина Сg является нижней границей для скрытой ПС стегоканалов, использующих произвольные контейнеры.
Верхняя граница скрытой ПС определяется максимумом взаимной информацией между скрываемым сообщением и стего, полагая, что стего имеет нормальное распределение с дисперсией S + N и шум в канале является гауссовским с мощностью Ne. Следовательно
. (3.34)
Очевидно, что если контейнер можно представить в виде белого гауссовского шума, то его энтропийная мощность уменьшается до величины N и скрытая ПС принимает минимальное значение, равное Сg.
Для аналитической оценки количества скрываемой информации в избыточных контейнерах, таких как изображения или речевые сигналы, необходимо знать их распределения вероятностей. Однако точные вероятностные характеристики таких контейнеров неизвестны и вряд ли когда-либо станут известными в силу нестационарности естественных источников контейнеров. Несмотря на это, можно воспользоваться известными результатами сжатия избыточных сигналов, чтобы оценить верхнюю границу энтропии источника сигналов. В ряде работ разрабатывались достаточно сложные алгоритмы сжатия, предназначенные для максимального удаления избыточности из сжимаемых сигналов [4,32]. Достигнутое в ходе работы таких алгоритмов среднее число бит на один символ сжимаемых сигналов может быть использовано как практическая верхняя граница энтропии исследуемого источника. Например, для изображений лучшим на сегодня алгоритмом сжатия без потерь CALIC [4] достигнута скорость 2,99 бит на пиксел. Эта оценка получена на 18 полутоновых тестовых изображениях, выбранных ISO (Международной организацией по стандартизации), яркость пикселов которых представлена 8 битами. Используя величину достигнутой алгоритмом CALIC скорости как оценку энтропии изображений, мы можем вычислить как верхнюю, так и нижнюю границы скрытой пропускной способности стегоканала, в котором скрываемая информация встраивается в изображение-контейнер. Из полученной оценки энтропии изображений по формуле (3.33) легко определить величину энтропийной мощности контейнеров.
В итоге средняя мощность среди тестовых изображений ISO и средняя скорость алгоритма CALIC были использованы для вычисления границ скрытой пропускной способности для широкого диапазона значений отношения мощности скрываемого сигнала к мощности контейнерного шумового сигнала. На рис. 3.13 пунктирной линией показана величина пропускной способности Сg канала с белым гауссовским шумом. Средняя скорость CALIC по всем изображениям равна 4,9588 бит на пиксел, а средняя мощность сигналов изображения — 2284,7. Сплошная линия на рисунке показывает верхнюю границу скрытой пропускной способности, прерывистая — нижнюю. При уменьшении отношения мощности скрываемого сигнала к мощности контейнерного шумового сигнала нижняя граница скрытой пропускной способности снижается до 0. Реальное значение скрытой пропускной способности стегоканала находится между верхней и нижней границами и отражает то количество скрываемой информации, которое можно внедрить в один пиксел усредненного контейнерного изображения.
Рис. 3.13. Оценки скорости передачи скрываемых сообщений в зависимости от отношения сигнал/шум
Рис. 3.14. Оценки скорости передачи скрываемых сообщений в зависимости от отношения сигнал/шум для низкочастотного изображения «Lena» и высокочастотного изображения «Eiger»
Верхние и нижние границы скрытой ПС в работе [4] были вычислены для двух типовых полутоновых изображений. На левом графике рис. 3.14 показаны верхняя и нижняя границы величины скрытой пропускной способности стеганографического канала для тестового портретного изображения «Lena». В качестве оценки энтропии этого изображения была использована достигнутая алгоритмом CALIC скорость 4,6321 бит на пиксел. Правый график показывает верхнюю и нижнюю границы величины скрытой ПС для тестового пейзажного изображения «Eiger» (скорость CALIC 5,2366 бит на пиксел). На этих же графиках точками указаны достигнутые скорости передачи скрываемого сообщения в предложенной в работе [4] системе скрытия данных в изображении с расширением спектра (SSIS). Отметим, что достигнутые в стегосистеме SSIS скорости передачи скрываемых сообщений лежат между верхней и нижней границами скрытой пропускной способности, вычисленных для использованных контейнерных изображений.
- Аквариум. (Новое издание, исправленное и переработанное) - Виктор Суворов (Резун) - Шпионский детектив
- Древний рим — история и повседневность - Георгий Кнабе - История
- Компьютерная информация под защитой. Правовое и криминалистическое обеспечение безопасности компьютерной информации. Монография - Александр Сотов - Юриспруденция
- Комплексная нейропсихологическая коррекция и абилитация отклоняющегося развития — 1 - Анна Семенович - Психология
- Судебный отчет по делу антисоветского право-троцкистского блока - Николай Стариков - Прочая документальная литература