Этот «цифровой» физический мир - Андрей Гришаев
0/0

Этот «цифровой» физический мир - Андрей Гришаев

Уважаемые читатели!
Тут можно читать бесплатно Этот «цифровой» физический мир - Андрей Гришаев. Жанр: Физика. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Этот «цифровой» физический мир - Андрей Гришаев:
Трагедия многих талантливых одиночек, которые пытаются переосмыслить или даже подредактировать официальную физическую картину мира, заключается в том, что они основывают свои построения отнюдь не на экспериментальных реалиях. Талантливые одиночки читают учебники – наивно полагая, что в них изложены факты. Отнюдь: в учебниках изложены готовенькие интерпретации фактов, адаптированные под восприятие толпы. Причём, эти интерпретации выглядели бы очень странно в свете подлинной экспериментальной картины, известной науке. Поэтому подлинную экспериментальную картину намеренно искажают – в книге приведено множество свидетельств о том, что ФАКТЫ частью замалчиваются, а частью перевраны. И ради чего? Ради того, чтобы интерпретации выглядели правдоподобно – будучи в согласии с официальными теоретическими доктринами. На словах у учёных мужей получается красиво: ищем, мол, истину, а критерий истины – практика. А на деле у них критерием истины оказываются принятые теоретические доктрины. Ибо, если факты не вписываются в такую доктрину, то перекраивают не теорию, а факты. Ложная теория оказывается подтверждена лживой практикой. Зато самолюбие учёных не страдает. Мы, мол, верной дорогой шли, идём, и идти будем!Это не очередная «теория заговора». Просто каждый учёный понимает, что если он «попрёт против течения», то он будет рисковать репутацией, карьерой, финансированием…Успехи современных технологий не имеют к физическим теориям почти никакого отношения. Раньше мы были хорошо знакомы с ситуацией, когда на глючном и сбойном программном обеспечении иногда удавалось сделать что-то полезное. Выясняется, что достойную конкуренцию продукции крутых парней из Рэдмонда могут составить физические теории. Например, Эйнштейн тормознул физику своими творениями конкретно лет на сто. И атомную бомбу сделали не благодаря теории относительности, а вопреки ей. Но проблема не только лично в Эйнштейне с эпигонами, которые вслед за мэтром принялись наперебой навязывать реальности свои надуманные «аксиомы» и «постулаты», «наваривая» на этом «научную репутацию» и «конкретные бабки». Всё гораздо серьезнее.Добро пожаловать в реальный, то есть, «цифровой» физический мир!
Читем онлайн Этот «цифровой» физический мир - Андрей Гришаев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 76 77 78 79 80 81 82 83 84 ... 91

В любом из вышеперечисленных случаев, резонансным энергиям возбуждения будет соответствовать серия спектральных линий, сгущающихся в сторону увеличения длин волн (в отличие от «колебательных» линий, которые сгущаются в сторону уменьшения длин волн [К4]). Как можно видеть, линии резонансного ряда, о котором идёт речь, при достаточно больших длинах волн – т.е. в микроволновой или радиочастотной области – должны сливаться в сплошной спектр. Действительно, этот сплошной спектр хорошо известен специалистам по радиоспектроскопии. Между тем, этот сплошной спектр отнюдь не должен иметь места в рамках ортодоксального подхода – согласно которому, величины минимальных энергий возбуждения молекул дискретны, соответствуя вращательным квантам. Факт сплошного спектра молекулярного излучения-поглощения в длинноволновой области – важное свидетельство в пользу нашего подхода.

Характеристические инфракрасные спектры сложных молекул.

Хорошо известно, что молекулы сложных веществ – в газообразном, жидком, твёрдом состояниях, а также в растворах – дают характеристические наборы линий поглощения, лежащих в ИК-диапазоне, в области ~100-5000 см-1 [Б2,Е2]. Примечательно, что каждая такая линия поглощения соответствует химической связи между конкретной парой атомов или радикалов. Причём, спектральное положение каждой такой линии почти одинаково для самых различных молекул, в состав которых входит соответствующая пара атомов или радикалов. Характеристичность этих линий успешно используется в структурном анализе – так, методами ИК-спектроскопии, выявляются даже следовые количества специфических веществ.

Считается установленным, что эти характеристические линии обусловлены свободными механическими колебаниями пары связанных атомов или радикалов – около их равновесной конфигурации. Различают валентные колебания, при которых осциллирует расстояние между ядрами связанных атомов, и деформационные колебания, при которых осциллирует угол между линиями задействованных валентных связок «протон-электрон» (происходят колебания «излома» химической связи) – собственные частоты этих двух типов колебаний отличаются друг от друга. Логично допустить, что валентные и деформационные колебания возбуждаются, например, при столкновениях молекул.

Если вспомнить про т.н. колебательные спектры, то обращает на себя внимание следующее противоречие в традиционных представлениях. Считается, что колебательные спектры также обусловлены механическими колебаниями молекул. Но ведь свойства колебательных и характеристических спектров – принципиально разные. Для характеристических линий отчего-то не работает квантово-механический подход – ибо никаких серий характеристических линий не наблюдается, и, значит, о колебательных квантах здесь не может быть и речи. Более того: в своих различных «электронных» состояниях молекула должна иметь различные частоты собственных колебаний – и, единственно из-за этого, каждой химической связи должен был бы соответствовать набор линий в характеристических ИК-спектрах. Опять же, этого не наблюдается. Тот факт, что конкретной химической связи соответствуют одна-две линии в характеристических ИК-спектрах, мы рассматриваем как убедительное свидетельство о том, что в данном случае мы имеем дело действительно с механическими колебаниями молекул. Ведь, в самом деле, при конкретных параметрах механической колебательной системы, частота конкретного типа её собственных колебаний имеет единственное значение.

Подчеркнём, что характеристические ИК-спектры отражают участие молекул в электромагнитном взаимодействии, поэтому эти спектры не могут быть обусловлены чисто механическими осцилляциями связанных атомов или радикалов. Мы полагаем, что механические осцилляции накладывают дополнительную модуляцию на вибрирующий электрический диполь в химической связи (5.7) – что и даёт соответствующую линию поглощения электромагнитной энергии. Именно о таком происхождении характеристических ИК-линий свидетельствует тот факт, что их спектральные положения не являются абсолютно неизменными – они, в некоторой степени, «плавают» в зависимости от ряда факторов, так или иначе влияющих на «электромагнитное трение» у колеблющихся компонентов молекулы. Эти факторы, в частности, таковы: дисперсность (степень измельчения) исследуемого вещества, его агрегатное состояние, степень полярности растворителя и его кислотность или основность, а также способность или неспособность молекул исследуемого вещества образовывать водородные связи друг с другом [Б2].

Но, по большому счёту, положения характеристических ИК-линий для конкретных молекул можно считать, практически, неизменными. Это касается и возбуждённых молекул – которые, несомненно, тоже дают вклад в характеристическое поглощение. Мы усматриваем здесь прямое указание на то, что, при возбуждении молекулы, сохраняется её пространственная конфигурация – и, в частности, остаётся постоянной длина химической связи. Этот вывод вполне согласуется с указаниями на то, что и атомы, при наличии у них энергии возбуждения, не изменяют свои размеры (4.9).

5.9. О понятии «температура».

Едва ли можно составить ясное представление о том, что такое температура, на основе таких известных её определений, как «функция внешних параметров и энергии системы, которая для всех систем, находящихся в равновесии, при их соединении имеет одно и то же значение» [Л2], или, ещё лучше: «производная от энергии тела по его энтропии» [Ф1]. Тут требуются ещё и толкования, которые, вкратце, таковы. Температура тела тем выше, чем больше интенсивность хаотического движения частиц, составляющих тело, и тем выше, чем больше средняя энергия квантовых возбуждений в теле. При приведении в тепловой контакт двух тел, имеющих различные температуры, т.е. «горячего» и «холодного», в процессе выравнивания их температур происходит преимущественная передача энергии от «горячего» тела к «холодному».

На основе подобных толкований может создаться впечатление, что температура – это мера энергосодержания. Такое впечатление ещё более укрепляется законом о равнораспределении тепловой энергии по степеням свободы: на каждую из них приходится, как полагают, энергия E=(1/2)kT, где k – постоянная Больцмана, T – абсолютная температура. Однако, обманчива видимость прямой пропорциональности между энергией и температурой. Энергия является величиной аддитивной, а температура – неаддитивной [К5]. При соединении двух тел, имеющих одинаковые энергии, мы получаем удвоенную энергию, но при соединении двух тел, имеющих одинаковые температуры, мы не получаем удвоенной температуры. Работает закон сохранения энергии, но не работает закон сохранения температуры. Каким же образом неаддитивная величина, температура, может быть мерой аддитивной величины, энергии?

Это фундаментальное противоречие, на наш взгляд, устраняется, если допустить, что температура является не мерой энергии в той или иной форме, а мерой соотношения между величинами энергии в двух различных формах, которые образуют сопряжённую пару – их сумма остаётся постоянной, поскольку увеличение одной из них происходит за счёт уменьшения другой. Приведём поясняющий пример. Полагают, что если атом возбуждается в результате поглощения кванта энергии, то суммарная энергия атома увеличивается на величину энергии возбуждения. Но не следует забывать, что устойчивость атома имеет энергетическую меру: энергию связи – которая, на наш взгляд, принципиально положительна (1.3), как и любая форма физической энергии, которая непременно соответствует какой-либо форме движения. Из опыта достоверно известно, что, при возбуждении атома, энергия связи уменьшается на величину, равную энергии возбуждения. Т.е., в данном случае энергия возбуждения и энергия связи образуют сопряжённую пару энергий. По нашей логике, среднее положение «разделительных планок» между этими энергиями – для ансамбля атомов – соответствует величине температуры. При «поглощении» и «излучении» квантов энергии атомом, всего лишь сдвигается положение этой «разделительной планки», но сумма энергии возбуждения и энергии связи у атома остаётся постоянной (3.10) – равной энергии ионизации из основного состояния. Таким образом, при «поглощении» кванта, атом не приобретает энергию сверх той, которую он уже имел, а, при «излучении» кванта, атом не отдаёт нисколько из той энергии, которую он имеет. В частности, при лазерной обработке образца, температура в зоне термического воздействия повышается, но при этом никакого переноса энергии в образец по лазерному лучу не происходит. Этот вывод покажется абсурдным для тех, кто хорошо усвоили учение о свете, как о летящих фотонах. Но экспериментальные реалии говорят об абсурдности как раз этого учения: фотонов, как летящих порций энергии, не существует в природе (3.11). По логике «цифрового» мира, происходят всего лишь скоррелированные квантовые скачки (3.10): у одного атома «разделительная планка» между энергиями возбуждения и связи перескакивает вниз, а у другого она перескакивает вверх – что порождает иллюзию передачи кванта энергии с одного атома на другой. Эти квантовые скачки происходят в полном согласии с принципом автономных превращений энергии квантовых пульсаторов (4.4): энергия связи у атома появилась за счёт уменьшения собственных энергий (т.е., масс) у связуемых электрона и протона (4.9), а энергия возбуждения у них появляется за счёт уменьшения их энергии связи (5.1).

1 ... 76 77 78 79 80 81 82 83 84 ... 91
На этой странице вы можете бесплатно читать книгу Этот «цифровой» физический мир - Андрей Гришаев бесплатно.
Похожие на Этот «цифровой» физический мир - Андрей Гришаев книги

Оставить комментарий

Рейтинговые книги