Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин
0/0

Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин

Уважаемые читатели!
Тут можно читать бесплатно Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин. Жанр: Физика. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин:
Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы-Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мульти-вселенные — вот далеко не полный перечень обсуждаемых вопросов. Используя ясные аналогии, автор переводит сложные идеи современной физики и математики на образы, понятные всем и каждому. Брайан Грин срывает завесу таинства с теории струн, чтобы представить миру 11-мерную Вселенную, в которой ткань пространства рвется и восстанавливается, а вся материя порождена вибрациями микроскопических струн. Книга вызовет несомненный интерес как у специалистов естественно-научных дисциплин, так и у широкого круга читателей.
Читем онлайн Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 49 50 51 52 53 54 55 56 57 ... 116

Рис. 8.2. Поверхность Садового шланга является двумерной. Одно измерение(идущее вдоль горизонтальной оси шланга), отмеченное прямой стрелкой, является длинным и протяженным. Другое измерение (окружность шланга), отмеченное круговой стрелкой, является маленьким и свернутым.

Калуца и Клейн предположили, что аналогичную структуру имеет и наша Вселенная, только в ней имеется три обычных, протяженных измерения и одно маленькое, циклическое; таким образом, общее число пространственных измерений равно четырем. Нарисовать предмет в пространстве с таким числом измерений непросто, поэтому для большей наглядности мы ограничились случаем двух протяженных и одного маленького циклического измерения. Мы изобразили это на рис. 8.3, где структура пространства последовательно увеличивается примерно так же, как в случае поверхности Садового шланга.

Самое нижнее изображение на рисунке показывает видимую структуру пространства — обычный окружающий нас мир в привычном масштабе расстояний, например, в метрах. Эти расстояния представлены самой редкой сеткой. На последующих изображениях структура пространства показана со все большим увеличением: мы фокусируем взгляд на все меньших областях, которые последовательно увеличиваем, чтобы сделать их видимыми. Сначала при переходе к меньшим расстояниям не происходит ничего особенного; на первых трех уровнях увеличения пространство сохраняет основные особенности своей структуры. Однако, по мере того как мы продолжаем наше путешествие вглубь микромира, на четвертом уровне увеличения на рис. 8.3 появляется новое, свернутое циклическое измерение, напоминающее круговые петли на ковре плотной вязки.

Рис. 8.3. Как и на рис. 8.1, каждый последующий уровень представляет значительное увеличение пространственной структуры, показанной на предыдущем уровне. Видно, что наша Вселенная может иметь дополнительные измерения (как это показано на четвертом уровне увеличения), коль скоро они свернуты в столь малые пространственные образования, что не поддаются прямому наблюдению.

Калуца и Клейн предположили, что дополнительное циклическое измерение существует в каждой точке пространства, определяемого протяженными измерениями, точно так же, как круговой ободок существует в каждой точке вдоль оси развернутого горизонтального шланга. (Для большей наглядности мы изобразили циклические измерения только в точках, равномерно расположенных на протяженных измерениях.) На рис. 8.4 крупным планом показана микроструктура пространства, какой ее видели Калуца и Клейн.

Рис. 8.4. Линии сетки соответствуют обычным протяженным измерениям; кружками показаны новые малюсенькие свернутые измерения. Подобно круговым петелькам, образующим ворс ковра, эти кружки существуют в каждой точке протяженных измерений, однако чтобы не загромождать рисунок, мы нарисовали их только в узлах сетки.

Несмотря на очевидное сходство с Садовым шлангом, есть и несколько важных различий. Вселенная имеет три протяженных пространственных измерения (мы показали только два из них) по сравнению с одним таким измерением у Садового шланга. Однако еще важнее то, что на этом рисунке мы показали пространственную структуру самой Вселенной, а не просто объекта (такого как Садовый шланг), который существует внутри Вселенной. Но основная идея остается неизменной: если дополнительные, свернутые циклические измерения нашей Вселенной, подобные круговым ободкам на Садовом шланге, являются чрезвычайно малыми, их гораздо труднее обнаружить, чем явно наблюдаемые протяженные измерения. На самом деле, если размер этих измерений достаточно мал, их невозможно обнаружить даже с помощью самых мощных инструментов. Что очень важно, циклическое измерение представляет собой не просто какое-то вздутие внутри привычных протяженных измерений, как может показаться при взгляде на рисунок. Напротив, циклическое измерение представляет собой новое измерение, которое существует в каждой точке пространства обычных измерений, наряду с измерениями вверх-вниз, влево-вправо и вперед-назад, которые также существуют в каждой точке. Это новое и независимое направление, в котором мог бы двигаться муравей, если бы он был достаточно мал. Чтобы определить пространственное положение такого микроскопического муравья, нам потребуется указать, где он находится в обычных пространственных измерениях (представленных сеткой), а также где он расположен на циклическом измерении. Для представления информации о расположении в пространстве потребуется четыре числа; если добавить время, пространственно-временная информация потребует пяти параметров, на один больше, чем мы привыкли думать.

Итак, мы пришли к довольно удивительным выводам. Хотя мы наблюдаем только три протяженных пространственных измерения, рассуждения Калуцы и Клейна показывают, что это не исключает существования дополнительных, свернутых измерений, по крайней мере, если они достаточно малы. Вселенная вполне может иметь больше измерений, чем доступно нашему глазу.

Насколько малы должны быть эти измерения? Современная техника может обнаружить объекты, размер которых составляет одну миллиардную от одной миллиардной доли метра. Если дополнительное измерение свернуто до размера, который меньше этого значения, обнаружить его невозможно. В 1926 г. Клейн объединил первоначальное предположение Калуцы с некоторыми идеями бурно развивавшейся квантовой механики. Его расчеты показали, что дополнительное циклическое измерение по размерам сопоставимо с планковской длиной, что выходит далеко за рамки современных возможностей экспериментального изучения. С этого времени физики стали называть гипотезу о существовании дополнительных крошечных пространственных измерений теорией Калуцы-Клейна.[67]

Взад и вперед по Садовому шлангу

Наглядный пример Садового шланга и иллюстрации, приведенные на рис. 8.3, призваны прояснить то, почему наша Вселенная может иметь дополнительные пространственные измерения. Но даже специалистам, ведущим исследования в этой области, трудно наглядно представить Вселенную, имеющую более трех пространственных измерений. По этой причине физики, следуя примеру Эдвина Эббота[68], опубликовавшего в 1884 г. увлекательную книгу Флатляндия[69] ставшую классикой популярного жанра, часто стремятся развить свои интуитивные представления о дополнительных измерениях, пытаясь представить, на что была бы похожа жизнь в воображаемой вселенной, имеющей меньшее число измерений, живя в которой мы постепенно осознаем, что она имеет больше измерений, чем прямо доступно нашему наблюдению. Попробуем вообразить двумерную вселенную, по форме напоминающую Садовый шланг. При этом мы должны отказаться рассматривать шланг с точки зрения «внешнего» наблюдателя как объект нашей Вселенной. Мы должны переместиться из нашего мира во вселенную Садового шланга, в которой поверхность очень длинного Садового шланга (вы можете считать его бесконечно длинным) являет собой все пространство этой вселенной. Представьте себе, что вы крошечный муравей, живущий своей жизнью на этой поверхности.

Перейдем к еще более экстремальной точке зрения. Представим, что длина циклического измерения во вселенной Садового шланга очень мала, настолько мала, что ни вы, ни ваши собратья-обитатели шланга даже не подозреваете о существовании этого измерения. Напротив, вы и все живущие во вселенной Садового шланга считаете бесспорно очевидным следующий фундаментальный факт вашей жизни — вселенная имеет одно пространственное измерение. (Если бы вселенная Садового шланга породила своего муравьиного Эйнштейна, обитатели шланга могли бы сказать, что их вселенная имеет одно пространственное и одно временное измерение.) В действительности этот факт кажется им настолько самоочевидным, что обитатели шланга называют место, где они проживают, Линляндией[70] подчеркивая тем самым, что оно имеет одно пространственное измерение.

Жизнь в Линляндии сильно отличается от той, к которой мы привыкли. Например, знакомые нам тела просто не могут поместиться в Линляндии. Сколько бы усилий вы ни прилагали, пытаясь изменить форму тела, вам ничего не удастся сделать с тем очевидным фактом, что у вас есть длина, ширина и высота, т.е. пространственная протяженность в трех измерениях. В Линляндии нет места для таких экстравагантных конструкций. Хотя ваш мысленный образ Линляндии может быть по-прежнему связан с длинным, похожим на нить объектом, существующим в нашем пространстве, вспомните, что вы должны думать о Линляндии как о вселенной — это и есть вселенная. Как обитатель Линляндии вы должны помещаться в ней. Попробуйте представить себе это. Даже если у вас будет тело муравья, вы не поместитесь в вашу вселенную. Вы должны сплющить ваше муравьиное тело, чтобы оно выглядело подобно телу червяка, а затем сдавливать его еще и еще, пока у него совсем не останется толщины. Чтобы жить в Линляндии, вы должны быть существом, у которого есть только длина.

1 ... 49 50 51 52 53 54 55 56 57 ... 116
На этой странице вы можете бесплатно читать книгу Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин бесплатно.

Оставить комментарий

Рейтинговые книги