Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов
0/0

Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов

Уважаемые читатели!
Тут можно читать бесплатно Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов. Жанр: Физика. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов:
Квантовая механика – самый точный из известных человечеству способов описания мира на той фундаментальной глубине, которая определяет его структуру, но недоступна прямому наблюдению. Только благодаря квантовой природе удается существовать атомам, людям, звездам и почти всему остальному. Квантовые эффекты, которые уже задействованы в технологиях, максимально приближаются к нашим представлениям о чудесах. Но в силу самого своего устройства квантовая механика оставляет недосказанности в отношении поведения квантовых объектов и свойств реальности.На заре второго квантового столетия Алексей Семихатов, автор бестселлера «Всё, что движется», предлагает последовательное изложение современного состояния квантовой механики. Каковы принципиальные особенности квантового мира и какой ценой их можно примирить с интуицией? По каким правилам развиваются квантовые системы во времени и как в это развитие вмешиваются вероятности? Как различные интерпретации квантовой механики подталкивают нас к глубоко философским заключениям о возможном устройстве реальности – от параллельных вселенных до разрывов в восприятии? И как привычная нам реальность возникает из чуждой ей квантовой? Что все-таки делает квантовый компьютер, что и как вовлекается в квантовую запутанность и почему квантовым объектам приходится существовать без некоторых свойств? Оказывается, о квантовой механике можно всерьез говорить понятным языком, а обсуждение ее сложных мест делает этот разговор только интереснее.Согласно квантовым законам и только лишь благодаря квантовым законам существуют атомы, из которых состоим и мы сами, и почти все на планете Земля; благодаря квантовым законам горит Солнце; квантовые процессы определяют взаимодействие света и вещества; весь наш мир собран из квантовых объектов. Но фундаментальная квантовая природа в глубине мира остается в основном незаметной из-за мельтешения огромного числа мельчайших участников. По отдельности они ведут себя квантово и взаимодействуют друг с другом тоже по квантовым правилам, но все вместе образуют привычный нам наблюдаемый, и почти ничем не квантовый, мир…. Парадоксальным образом привычные свойства окружающего мира основаны на чуждых ему квантовых явлениях.Особенности26 иллюстраций, нарисованных специально для книги. Иллюстратор Нюся Красовицкая предложила философско-метафорическое видение предмета, определяющая черта которого – отсутствие наглядности.Квантовая механика не похожа на другие физические теории. Она поразительно успешна на практике, а ее логическая структура приводит к интригующим проблемам философского порядка. Ее вычислительная схема основана на строгих формальных предписаниях, но знаменательным образом обходит стороной вопрос о том, что же физически происходит в пространстве-времени. И в соответствии со своей собственной логикой квантовая механика ставит перед нами вопросы об устройстве реальности, но не затрудняет себя однозначными ответами.Для когоДля тех, кому интересно, какие правила игры, радикально отличающиеся от привычных, лежат в самой основе мира и определяют устройство и нас самих, и почти всего, что нас окружает.Мир выглядел бы совершенно безумным, если бы в нашем восприятии отражалась даже малая часть экзотически запутанных состояний, которые в огромном количестве возникают в ходе эволюции волновой функции под управлением уравнения Шрёдингера. Общим местом была бы неопределенность положения и ориентации в пространстве; объекты находились бы в самых немыслимых комбинациях запутанных свойств.
Читем онлайн Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 64
вне атома, но происходящие из атомов. И вот электроны-то, кстати сказать, – неделимые (по самым современным представлениям). В годы, предшествовавшие их открытию, когда о чем-то подобном высказывались еще только догадки и предположения, говорили об «атомах электричества»{3}. Кто знает, если бы последовательность событий в истории науки оказалась несколько иной, электроны тоже сначала могли бы восприниматься не в физическом, а в «бухгалтерском» смысле – как средство учета электрических зарядов. Но, как бы то ни было, вполне физическое существование электрона зафиксировал Дж. Дж. Томсон, подведя итог нескольким десятилетиям исследования явлений, которые исторически были известны как «катодные лучи» и «бета-лучи» (а в действительности являются не чем иным, как потоками электронов, испускаемыми в различных физических ситуациях).

Электроны, как и атомы, никак не выглядят, а все, что нам удается видеть, – это следы, оставленные ими в нашем макроскопическом мире: таковы и трек в пузырьковой камере, и светящийся пиксель на экране телевизора XX в. Весь свет, который отражается от письменного стола, за которым я сейчас сижу, исходит из атомов, а точнее, испускается электронами в этих атомах – но не может ничего сообщить о том, как атом или электрон выглядят. Когда самая малая порция света попадает в атом, она взаимодействует там с электроном, отдавая ему свою энергию. И наоборот, электрон, получивший лишнюю энергию, может ее отдать, излучив свет. Но этот свет несет информацию не о том, как что-то выглядит, а о правилах жизни электронов внутри атомов. Сейчас эти правила следуют из квантовой теории – предмета всех последующих глав; угаданы же они были во многом благодаря изучению света, происходящего из атомов.

Во избежание недопонимания стоит сразу оговориться, что атомы, лишенные чего бы то ни было похожего на «твердую поверхность», имеют тем не менее характерный размер. Как бы ни был атом устроен, влияние всего того, что в нем находится, не простирается бесконечно. Эпитет «характерный» в применении к размеру атома надо понимать как «типичный и приблизительный». Если оценивать этот размер различными (по необходимости непрямыми) способами, то получающиеся значения могут различаться, но не слишком сильно; слово «характерный» не предполагает абсолютно точного совпадения. Характерный размер атома – десятая доля нанометра, или 1 ангстрем, или 10–8 см (это можно разными способами уточнять для атомов различных видов, но отличия не очень значительны). Это и правда не слишком много: «нано» довольно прочно ассоциируется с малым, а это еще меньше.

То, что происходит внутри атома, и, собственно, само его существование оказалось невозможно описать в рамках законов природы, известных к началу XX в., несмотря на все успехи, достигнутые на их основе. Сформулированные новые законы природы составили квантовую механику – которая уже почти сто лет удивляет своей эффективностью и одновременно заметной необычностью своего устройства.

2

Что такое квант и что квантуется

Устройство квантового мира описывается квантовой теорией, часто называемой также квантовой механикой. Слово «механика» исходно указывало на круг задач по предсказанию движения: скажем, как далеко упадет снаряд, брошенный с заданной скоростью под определенным углом к горизонту (если мне простится школьный пример). «Предсказание» предполагает знание действующих факторов и, как правило, применение уравнений, в которых отражено это знание. Требуются, кроме того, начальные условия, фиксирующие положение дел, с которого события начинают развиваться. В только что приведенном примере действующие факторы – это притяжение Земли, и если предсказание требуется всерьез, а не на школьном уровне, то еще и сопротивление воздуха и даже вращение Земли, а начальные условия – это скорость в момент броска с учетом ее направления и расположение стартовой точки. В словосочетание же «квантовая механика» слово «механика» попало отчасти по инерции и означает примерно «предсказание, насколько это возможно, наблюдаемых результатов, исходя из действующих факторов и начальных данных». Некоторая расплывчатость формулировки, если вы обратили на нее внимание, не случайна и скрывает за собой многое из того, что нам предстоит увидеть.

А слово «квант» взялось из латыни – из вопросительного местоимения quantum, которое употребляется в вопросах типа «насколько много?» и «какое количество?». В нашей истории его стали употреблять в отношении порций. Сначала это были порции энергии. Появление порций – существенная часть квантовых правил.

В мире атомов, электронов и всего такого энергия во многих (причем важных) случаях передается не в любых количествах, а в «расфасованном» виде. Это не означает, что Вселенная наполнена заранее приготовленными порциями энергии. Например, свет несет энергию порциями, величина которых зависит от цвета – т. е. от длины волны. Чем ближе цвет к сине-фиолетовому краю радуги, тем больше энергии в одной порции, и еще больше – за пределами видимого спектра, в области все более коротких длин волн (примерно поэтому ультрафиолет не слишком нам полезен, а у рентгенологов сокращенный рабочий день). Но для света с определенной длиной волны, т. е. определенного цвета, эти порции энергии и правда всегда одинаковые. Все такие порции – и длинноволновые, и коротковолновые – в 1920-х гг. получили название фотонов. (Минимальные порции представляют собой предел того, сколь слабым может быть свет: меньше одного фотона означает ноль фотонов, т. е. отсутствие света. Кстати сказать, человеческий глаз устроен так, что в принципе способен реагировать буквально на несколько фотонов.)

«Порционность» несколько другого рода – называемая в данном случае дискретностью – характерна для составных квантовых объектов, т. е. для таких, которые возникают при объединении нескольких простых, вообще-то способных существовать отдельно друг от друга, но организовавших себе совместное проживание. Такие составные объекты первостепенно важны для нас, потому что мы из них состоим: это атомы и молекулы. Они могут существовать только при определенных дискретных значениях энергии, которую имеют их участники.

Наличие не любых, а только вполне определенных дискретных значений энергии служит обеспечительным механизмом для положения дел, которое мы почему-то часто считаем само собой разумеющимся, но которое без квантовых законов попросту невозможно: все атомы одного вида совершенно одинаковы и полностью взаимозаменяемы. Встроенная и неотменяемая дискретность «контролирует качество сборки», приводя к неразличимым атомам, скажем, кислорода или молекулам, скажем, углекислого газа. Понимание же того, откуда возникает сама дискретность, заняло около полутора десятилетий, и отправной точкой тут послужил ключевой факт, обнаруженный экспериментально, когда XX в. был еще молод (1908–1911). Резерфорд руководил тогда опытами по выяснению структуры материи посредством простреливания через нее электрически заряженными агентами.

Наш мир был бы невозможен без многого, что в нем фактически имеется, но уж заведомо невозможен без электрических зарядов. Хотя почти все вокруг нас электрически нейтрально (благодаря чему нас не «ударяет током» ежесекундно), это не потому, что зарядов нет, а потому, что противоположные заряды компенсируют друг друга{4}. Электрически нейтральным является и атом. Ко времени опытов Резерфорда было достоверно известно, что в атомах содержатся отрицательно заряженные электроны, а значит, там же должен присутствовать и компенсирующий их положительный заряд. Присутствовать – но каким именно образом? Выяснить это «глазами», даже вооруженными, невозможно, и требуется какое-то другое средство, чтобы «потыкать» внутренность атома.

Для выяснения структуры атома Резерфорд использовал так называемые альфа-частицы. Для него это был продукт, испускаемый некоторыми специальными – радиоактивными – атомами. Сейчас мы хорошо знаем, что производятся они благодаря непростому механизму, который включает в себя то, что Резерфорду только предстояло открыть, но Резерфорд и не думал загонять себя в логический круг, пытаясь объяснить еще и происхождение альфа-частиц. Он просто воспользовался эмпирически накопленными данными о радиоактивности, т. е. о вылетании, среди прочего, заряженных частиц из атомов, и взял в качестве источника альфа-частиц атомы радия. Конечно, альфа-частицы, как и всех остальных персонажей квантового мира, тоже нельзя увидеть (в этом одна из причин, почему радиоактивность не была открыта раньше, а также объяснение опасений перед невидимым в связи с современными ядерными объектами: если излучаемые частицы невидимы, то уверены ли мы в том, что их контролируем?). Но ничто не мешало Резерфорду и его сотрудникам наблюдать результат попадания альфа-частиц во флуоресцентный экран: производимые вспышки света фиксировались с помощью микроскопа.

1 2 3 4 5 6 7 8 9 10 ... 64
На этой странице вы можете бесплатно читать книгу Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов бесплатно.
Похожие на Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов книги

Оставить комментарий

Рейтинговые книги