Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин
- Дата:20.09.2024
- Категория: Научные и научно-популярные книги / Физика
- Название: Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории)
- Автор: Брайан Грин
- Просмотров:0
- Комментариев:0
Шрифт:
Интервал:
Закладка:
Конец застою положил захватывающий дух доклад, сделанным Эдвардом Виттеном в 1995 г. на конференции по теории струн в университете Южной Калифорнии — доклад, который ошеломил аудиторию, до отказа заполненную ведущими физиками мира. В нем он обнародовал план следующего этапа исследований, положив тем самым начало «второй революции в теории суперструн». Сейчас специалисты по теории струн энергично работают над новыми методами, которые обещают преодолеть встреченные препятствия. Трудности, которые лежат впереди, будут серьезным испытанием для ученых, работающих в этой области, но в результате свет в конце тоннеля, хотя еще и отдаленный, может стать видимым.
В этой и в нескольких последующих главах мы опишем открытия теории струн, явившиеся результатом первой революции и поздних исследований, выполненных до начала второй революции. Время от времени мы будем упоминать достижения, сделанные в ходе второй революции; подробное описание этих новейших достижений будет приведено в главах 12 и 13.
Снова атомы в духе древних греков?Как мы говорили в начале данной главы, и как показано на рис. 1.1, теория струн утверждает, что если бы мы могли исследовать точечные частицы, существование которых предполагает стандартная модель, с точностью, выходящей далеко за пределы наших современных возможностей, мы бы увидели, что каждая из этих частиц представляет собой крошечную колеблющуюся струну, имеющую форму петли.
По причинам, которые станут ясны в дальнейшем, длина типичной петли, образованной струной, близка к планковской длине, которая примерно в сто миллиардов миллиардов раз (1020) меньше размера атомного ядра. Неудивительно, что современные эксперименты не могут подтвердить струнную природу материи: размеры струн бесконечно малы даже в масштабе субатомных частиц. Для получения прямого подтверждения того, что струна не является точечной частицей, нам потребовался бы ускоритель, способный сталкивать частицы с энергией, в несколько миллионов миллиардов раз превышающей максимальный уровень, достигнутый на сегодняшний день.
Вскоре мы опишем ошеломляющие выводы, следующие из замены точечных частиц струнами, но сначала давайте рассмотрим более фундаментальный вопрос: из чего состоят струны?
Есть два возможных ответа на этот вопрос. Во-первых, струны действительно являются фундаментальными объектами — они представляют собой «атомы», неделимые компоненты в самом истинном смысле этого понятия, предложенного древними греками. Как наименьшие составные части материи, они представляют собой конец пути — последнюю матрешку — в многочисленных слоях, образующих структуру микромира. С этой точки зрения, даже если струны имеют определенные пространственные размеры, вопрос об их составе лишен какого-либо смысла. Если струны состоят из каких-то более мелких компонентов, они не могут быть фундаментальными. Напротив, из чего бы ни состояли струны, эти элементы немедленно займут место струн в притязании на роль наиболее фундаментальных компонентов мироздания. Используя нашу лингвистическую аналогию, можно сказать, что параграфы состоят из предложений, предложения — из слов, слова — из букв. А из чего состоит буква? С лингвистической точки зрения это конец пути. Буквы есть буквы — они представляют собой фундаментальные строительные блоки письменного языка; они не имеют внутренней структуры. Вопрос об их составе не имеет смысла. Аналогично струна представляет собой просто струну — поскольку нет ничего более фундаментального, нельзя описать струну как нечто, состоящее из каких-то других компонентов.
Это первый ответ. Второй ответ основывается на том простом факте, что сегодня мы не знаем, верна ли теория струн и является ли она окончательной теорией мироздания. Если теория струн неверна — ну что же, мы можем забыть струны и неуместный вопрос об их структуре. Хотя такая возможность существует, исследования, проводившиеся с середины 1980-х гг., показывают, что ее вероятность крайне мала. Однако история определенно научила нас, что каждый раз, когда мы углубляем наше понимание Вселенной, мы находим все меньшие компоненты микромира, составляющие более тонкий уровень организации материи. Итак, еще одна возможность, в случае если теория струн не окажется окончательной теорией, состоит в том, что струны образуют еще один слой в луковице мироздания, слой, который становится видимым в масштабах планковской длины, но который не является последним слоем. В этом случае струны могут состоять из еще более мелких структур. Специалисты по теории струн осознают такую возможность и ведут теоретические исследования в этом направлении. На сегодняшний день эти исследования привели к некоторым интригующим догадкам о более глубоких уровнях структуры, но они еще не получили окончательного подтверждения. Только время и дальнейшие исследования дадут окончательный ответ на этот вопрос.
За исключением некоторых гипотез, рассматриваемых в главах 12 и 15, мы будем рассматривать струны в том смысле, который следует из первого ответа, т.е. будем считать их наиболее фундаментальными компонентами мироздания.
Объединение через теорию струнПомимо неспособности включить в себя гравитационное взаимодействие, стандартная модель обладает еще одним недостатком — она не дает описания устройства объектов, с которыми работает. Почему природа выбрала именно те частицы и взаимодействия, которые были описаны в предыдущих главах и перечислены в табл. 1.1 и 1.2? Почему 19 параметров, которые описывают количественные характеристики этих компонентов, имеют именно те значения, которые имеют? Ученым не удавалось отделаться от чувства, что количество и свойства этих объектов являются совершенно случайными. Скрывается ли за этими, на первый взгляд абсолютно произвольными компонентами, какой-то более глубокий смысл, или физические свойства мироздания являются просто «игрой случая»?
Стандартная модель сама по себе не способна дать объяснения всем этим фактам, поскольку она принимает список частиц и их свойств как полученные экспериментально входные данные. Как показатели фондового рынка не могут быть использованы для определения ценности портфеля акций, которым вы владеете, без входных данных о ваших начальных капиталовложениях, так и стандартная модель не может быть использована для получения предсказаний без входных данных, содержащих фундаментальные свойства частиц[50]. После того как экспериментаторы проведут тщательное измерение этих данных, теоретики смогут использовать стандартную модель для поддающихся проверке предсказаний, например, что произойдет, если столкнуть какие-то определенные частицы в ускорителе. Но стандартная модель в той же мере не способна объяснить фундаментальные свойства частиц, перечисленные в табл. 1.1 и 1.2, в какой среднее значение индекса Доу-Джонса не способно ответить на вопрос о начальных капиталовложениях, сделанных десять лет тому назад.
На самом деле, если эксперименты покажут, что в микромире существуют какие-то иные частицы или какие-то дополнительные взаимодействия, то в стандартной модели изменения могут быть легко учтены путем замены списка входных параметров. В этом смысле структура стандартной модели обладает слишком большой гибкостью, чтобы дать объяснение свойствам элементарных частиц: она охватывает целый диапазон различных возможностей.
Теория струн имеет совершенно иной характер. Это теоретическое здание единой и жесткой конструкции. Все входные данные, которые ей необходимы, ограничиваются описываемым ниже единственным параметром, который устанавливает шкалу для проведения измерений. Теория струн способна объяснить все свойства микромира. Чтобы понять это, обратимся сперва к более привычным струнам скрипки. Каждая струна может совершать огромное (на самом деле бесконечное) число различных колебаний, известных под названием резонансных колебаний. Пример таких колебаний показан на рис. 6.1.
Рис. 6.1. У скрипичных струн существуют резонансные моды колебаний, на которых между концами струны укладывается целое число максимумов и минимумов.
Это колебания, у которых расстояние между максимумами и минимумами одинаково, и между закрепленными концами струны укладывается в точности целое число максимумов и минимумов. Человеческое ухо воспринимает резонансные колебания как различные музыкальные ноты. Схожие свойства имеют струны в теории струн. Они могут осуществлять резонансные колебания, в которых вдоль длины струн укладывается в точности целое число равномерно распределенных максимумов и минимумов. Некоторые примеры таких колебаний показаны на рис. 6.2.
- Сборник основных формул школьного курса химии - Г. Логинова - Химия
- Аквариум. (Новое издание, исправленное и переработанное) - Виктор Суворов (Резун) - Шпионский детектив
- Научные основы оценки и расчета технических рисков в техническом регулировании дорожного хозяйства - Шерали Назаралиевич Валиев - Экономика
- Найти идею. Введение в ТРИЗ – теорию решения изобретательских задач - Генрих Альтшуллер - Управление, подбор персонала
- Потребности человека, их классификация и количество. А также: теория деятельности, отрицательные чувства, стрессы, исследование сексуальной и эстетической любви - Геннадий Генев - Психология