Этот «цифровой» физический мир - Андрей Гришаев
- Дата:20.06.2024
- Категория: Научные и научно-популярные книги / Физика
- Название: Этот «цифровой» физический мир
- Автор: Андрей Гришаев
- Просмотров:1
- Комментариев:0
Шрифт:
Интервал:
Закладка:
Поскольку официальные источники молчат, обратимся к источникам неофициальным. Баллистики, обсчитывавшие первые полёты к Луне, недоумевали: выходило, что поворот оказался значительно меньше того, который был бы по ньютоновской теории. «Заказчик ставил задачи со «странными» исходными данными, по расчёту управления лунным спутником; на вопрос «откуда такие цифры?» - был ответ «не ваше дело» [У1]. Между тем, малость поворота траектории «Луны-1» могла быть обусловлена малостью радиуса области лунного тяготения, т.е., прохождением аппарата лишь по небольшому участку на её периферии.
Далее, аппарат «Луна-3», запущенный 4 октября 1959 г., впервые произвёл пассивный облёт Луны. Траектория облёта состояла из гиперболического участка в области тяготения Луны и последующего эллиптического разворота, обусловленного тяготением Земли. Из траекторных данных, имеющихся в свободном доступе [Л5], прямо следует малость области тяготения Луны: наша оценка для высоты его границы над лунной поверхностью составила 10000 км [Г10].
Теперь спрашивается: известны ли случаи, когда искусственный спутник Луны имел орбиту с апоселением (наиболее удалённой точкой от Луны) выше, чем 10000 км от поверхности? В 60-е – 70-е годы ХХ века, максимальную высоту апоселения имел «Лунар Орбитер-5»: 6050 км [К5]. Впоследствии эта цифра была увеличена: американский зонд Clementine (1994) имел высоту апоселения 8300 км, американский зонд Lunar Prospector (1998) – 8500 км [ВЕБ18], а китайский «Чан Э» (2007) – 8600 км [ВЕБ19]. Что касается зонда Kaguya (2007), то для высоты его первого, самого высокого, апоселения Японское космическое агентство назвало цифру 11741 км [ВЕБ20], и её повторили многие информационные агентства. Но эта цифра может быть несколько завышена, поскольку она явилась результатом прогноза, сделанного сразу же после главного тормозного манёвра [ВЕБ20]. Во всяком случае, все названные цифры значительно меньше, чем радиус сферы действия Луны.
Поразительно то, что отечественные и американские специалисты, ещё полвека назад запускавшие первые аппараты к Луне, отлично знают про малость области её тяготения. Но эта информация до сих пор представляет собой важную научную тайну, поэтому современные японские, китайские и европейские аппараты, отправляемые к Луне, нарываются на гравитационные сюрпризы. Нам известно про два проекта, в которых производились попытки захвата аппарата тяготением Луны на удалениях, значительно больших 10000 км. В обоих случаях официально сообщалось, что захват произошёл – но новоиспечённый спутник Луны оказывался не в состоянии выполнять запланированную научную программу.
Первый из этих двух проектов – полёт японского зонда MUSES-A (Hiten), запущенного в 1990 г. «Во время… первого пролёта Луны предстояло выполнить две задачи: использовать гравитационное поле Луны для увеличения скорости КА и для повышения апогея орбиты, а также отделить от основного КА малый субспутник «Хагоромо», которому предстояло стать искусственным спутником Луны… Отделение «Хагоромо» от базового блока произошло в соответствии с программой полёта в тот момент, когда «Хитен» пролетал на высоте 20 тыс. км от поверхности Луны. Однако собственный передатчик «Хагоромо» вышел из строя, и в центре управления на Земле не удалось получить никаких данных с аппарата и подтвердить его выход на окололунную орбиту. Позже, используя большой оптический телескоп, японским астрономам удалось увидеть, как «Хагоромо» движется по орбите Луны… но как научный аппарат «Хагоромо» был потерян» [ВЕБ21]. Эта официальная версия о выходе «Хагоромо» на окололунную орбиту выглядит неубедительно, поскольку в ней умалчивается о том, удался ли запланированный гравитационный манёвр основного модуля. Более того, в дальнейшем Hiten совершил, как сообщалось, ещё несколько гравитационных манёвров на пролётах вблизи Луны – но, опять же, японцы умалчивали о подробностях. Похоже, хвалиться-то было нечем. Зато известно, что на одиннадцатом пролёте, когда аппарат был переведён на окололунную орбиту, он проходил на расстоянии всего 423 км от поверхности Луны [ВЕБ21]!
Второй же из этих проектов – полёт зонда SMART-1 Европейского космического агентства (ЕКА, ESA). Зонд был выведен ракетой-носителем на околоземную стартовую орбиту в сентябре 2003 г. Затем зонд в течение года с небольшим "раскачивал" орбиту с помощью плазменного двигателя малой тяги, подтягивая апогей к орбите Луны. Планировался захват зонда тяготением Луны при первом же входе в т.н. сферу действия Луны, на удалении от неё около 60000 км. Затем, после снижения на окололунную орбиту, планировалось сделать множество фотографий лунной поверхности. В частности, обещали заснять следы пребывания американских астронавтов на Луне - поэтому миссия была широко прорекламирована.
Специалисты хорошо знали цену этим обещаниям - известно, что Луна чуть не постоянно "скрипит" из-за слабых "лунотрясений", что там имеет место электростатическое "оползание" грунта, и что движение линии терминатора (границы день-ночь) по поверхности Луны сопровождается пыльной бурей. В течение месяца полоса пыльной бури дважды прокатывается по поверхности Луны, и наивно полагать, что от "следов астронавтов" что-то могло сохраниться. Специалисты знали об этом, но помалкивали – как и о том, что лунное тяготение действует на космические аппараты не далее 10000 км от поверхности Луны. Поэтому в ESA не подозревали, что SMART-1 далеко не долетит до области тяготения Луны, и что этот проект обречён на провал.
Теоретически, зонд следовало ввести хотя бы в ближайшую к Земле область сферы действия Луны – с селеноцентрической скоростью, меньшей чем местная круговая – и зонд захватился бы тяготением Луны. Но сразу после того как такой ввод был произведён, что-то пошло «не так». На официальном сайте ESA перестали появляться обновления, оперативно освещавшие полёт SMART-1. После неприлично затянувшейся паузы, ESA задним числом сообщило о том, что зонд был захвачен тяготением Луны, затем, на малой тяге, переведён на низкую полярную орбиту, и даже передал на Землю несколько фотографий участков лунной поверхности. После очередной паузы, эти фотографии были опубликованы. Приглядевшись, специалисты узнали в них снимки тридцатилетней давности, сделанные другими космическими аппаратами. После ещё нескольких месяцев молчания о том, чем занимается SMART-1 в окололунном пространстве, ESA заявило о том, что зонд выполнил свою миссию и будет разбит о поверхность Луны. «SMART-1 спрятал концы в лунную пыль» - издевались информационные агентства. Даже неспециалисты подозревали, что ESA дурачило общественность! О том, как это всё происходило в реальном времени, красноречиво свидетельствует весёлая дискуссия на форуме портала "Новости космонавтики" [ВЕБ22]; доступен также конспект этой дискуссии [ВЕБ23].
Кстати, вывод о лжи ESA можно было сделать сразу после того, как были опубликованы данные [ВЕБ24], описывающие «захват» зонда тяготением Луны. Этих данных достаточно для реконструкции, во-первых, полуэллипса подлёта, по которому зонд двигался в поле тяготения Земли перед тем как, вблизи апогея, войти в сферу действия Луны, и, во-вторых, первого полуэллипса снижения в сфере действия Луны. Даже старшеклассник мог бы убедиться в том, что эти два полуэллипса не «сшиваются» друг с другом [Г10] – а, значит, официальная информация о захвате зонда тяготением Луны и о его дальнейшей судьбе является фальсификацией.
Что же в действительности произошло с зондом SMART-1? По-видимому, при малости области тяготения Луны, зонд просто не вошёл в эту область – и, как ни в чём не бывало, продолжил свой полёт по эллиптической орбите вокруг Земли. Самое разумное, что могли сделать руководители полёта в такой ситуации – это проверить, не «захватится» ли зонд на следующем пролёте через сферу действия Луны. До срока завершения миссии можно было сделать ещё несколько попыток такой проверки [Г10]. Но чуда не произошло. Чтобы зонд добрался до области лунного тяготения и в самом деле захватился, требовалось ещё поднять апогей и значительно увеличить апогейную скорость. Увы – на малой тяге и с почти израсходованными запасами рабочего вещества – выполнение этой задачи было совершенно нереально. По всей вероятности, зонд до сих пор летает по эллиптической орбите, которая почти дотягивается до орбиты Луны.
А всё потому, что, на расстоянии уже в несколько десятков тысяч километров от Луны, её тяготение, вопреки официальным воззрениям, не действует.
2.13. Луна не притягивает Землю!
Если область тяготения Луны далеко не достаёт до Земли, то кинематика пары Земля-Луна должна отличаться от той, что предсказывает закон всемирного тяготения. Так ли это?
Рассмотрение обращения Луны вокруг Земли, наряду с орбитальными движениями планет, сыграло важную роль в работе Ньютона над законом всемирного тяготения. Среднее удаление Луны от Земли соответствует среднему периоду обращения Луны как раз в согласии с этим законом. И Лаплас в своей «Системе мира» [Л2] заявил, что полное согласие движения Луны с законом всемирного тяготения является неоспоримой научной истиной.
- Фарфоровое лето - Элизабет Хауэр - Проза
- Древний рим — история и повседневность - Георгий Кнабе - История
- Диабет. Мифы и реальность - И. Неумывакин - Здоровье
- Управление изменениями - Harvard Business Review (HBR) - Бизнес
- Археолог цифрового века – Том 1. 1966-1979 - Джимми Мехер - Прочая документальная литература / Прочая околокомпьтерная литература / Публицистика