Нанонауки. Невидимая революция - Жоаким Кристиан
0/0

Нанонауки. Невидимая революция - Жоаким Кристиан

Уважаемые читатели!
Тут можно читать бесплатно Нанонауки. Невидимая революция - Жоаким Кристиан. Жанр: Физика. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Нанонауки. Невидимая революция - Жоаким Кристиан:
Читем онлайн Нанонауки. Невидимая революция - Жоаким Кристиан

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 20 21 22 23 24 25 26 27 28 ... 38

Но как собрать множество молекулярных частей вместе — и так, чтобы получалась сложная машина? Одни ученые, скажем, Жан-Мари Лен, изучают самопроизвольную сборку раздельных деталей: такая «самосборка» или «автосборка» напоминает детские головоломки и пазлы. Необходимые части помечают какими-то химическими соединениями. Каждая такая химическая метка опознает свою пару, то есть соединение-метку на другом кусочке пазла, и затем два кусочка головоломки сцепляются между собой. И так до завершения сборки. Этот метод самопроизвольной сборки в ходу у вирусов и у некоторых живых существ, включая многие виды бактерий. Вот почему столь важны исследования таких наипростейших «машин» или еще меньших самособирающихся «автоматов», как вирусы.

Группе ученых под руководством профессора Эккарда Виммера в Университете Стони Брук под Нью-Йорком в 2002 году впервые удалось синтезировать вирус — это был вирус полиомиелита. В природе он выглядит как шарик диаметром 28 нм. Его генетическую и белковую структуры расшифровывал в 2000 году Джеймс Хогл из Гарвардского университета, а позднее, в 2001 году, и Эккард Виммер с сотрудниками. Вирус этот состоит из собственно вируса — виральной компоненты — и оболочки, более или менее сферической. Виральная часть — это макромолекула РНК, содержащая 7411 нуклеотидов, и каждый из них, если его развернуть, вытянется на несколько микрометров. Шарообразная оболочка (капсид), внутри которой прячется виральная часть (вирион), составлена из 60 подъединиц, в каждой — по четыре белка. А каждый белок содержит в среднем 250 аминокислот. В 2002 году команда Эккарда Виммера сначала синтезировала РНК виральной части с ее 7411 нуклеотидами: в большинстве своем это цепочки атомов, которые уже умеет получать биотехнология и которые потому можно просто купить в магазине. Потом ученые химически синтезировали недостающее. По сравнению с химическим синтезом молекулы-машины в несколько этапов задача чрезвычайно упростилась — хотя бы потому, что многократно приходится синтезировать одно и то же или же вносить в синтез незначительные и очень понятные перемены. Получив виральную составляющую, исследователи не стали спешить с синтезом четырех протеинов, из которых состоит оболочка вируса. Вместо этого, чтобы получить белки и, главное, построить их в правильном порядке, сотрудники Эккарда Виммера состряпали «суп» из живых клеток, и синтезированная РНК полиомиелита использовалась уже существующими и работающими клеточными механизмами для построения оболочки — словом, был запущен механизм автосборки (ученые подсунули клеткам чужую РНК, и клетки, по своей рабской привычке, послушно выполнили совершенно ненужную им работу: собрали капсид (оболочку) вируса). Значит, не всегда необходимо строить новые молекулярные заводы — можно просто заказать нужный продукт предприятиям, уже существующим в природе. Например, бактериям.

ЗАГОГУЛИНА В НАПРАВЛЕНИИ НАНОМАТЕРИАЛОВ

Мы уже рассказали о первых молекулах-машинах и показали те дорожки, которые, похоже, могут вывести нас к молекулярному производству, то есть изготовлению молекул достаточного размера, примерно в десяток нанометров, которым будут по силам те же сложные дела, что и привычным для нас машинам нашего — макроскопического — мира. И мы обозначили эту задачу термином «монументализация», хотя занимаются монументализацией считаные исследователи — куда больше ученых заинтересованы в новых материалах, которые они называют «наноматериалами». Наноматериалы вроде бы могут иметь отношение к бетону, облицовке, керамике… словом, к вещам заведомо полезным и очень осязаемым. И будто бы как нельзя более далеким от той области, в которой орудуют молекулы-машины. Да и масштабы — бетона! — как-то трудно увязываются с нанометрическими. И как тогда прикажете понимать это самое «нано»? Собственно, термин «наноматериал» был вычеканен потому, что очень уже неудобно выговаривать: «материал, структурированный в нанометрическом масштабе». Речь идет о материалах, построенных из элементов, которые представляют собой молекулы, макромолекулы или маленькие атомные агрегаты (более или менее упорядоченные нагромождения атомов), причем размеры этих элементов, этих составных частичек материала, несомненно, измеряются в нанометрах. Возьмем, например, поваренную соль (или, если угодно, хлорид натрия). Ее основной мотив — повторяющийся узор, в узлах которого расположены атом хлора и атом натрия (расстояние между ними менее 0,3 нм). Этот узор повторяется пространственно — в трех измерениях, и в итоге получается кристаллик соли, маленький кубик, который очень просто подцепить пинцетом, чтобы потом разглядывать через лупу. Стало быть, структура поваренной соли — вполне атомная. А теперь обратимся к какому-нибудь наноматериалу: его повторяющийся мотив — это одна молекула, быть может, сложная, но, главное, она придает материалу какую-то нужную характеристику (устойчивость к деформациям, способность запоминать информацию и т. п.). Но сие драгоценное качество появляется только тогда, когда миллионы таких — одинаковых — молекул собираются вместе. И это же верно и тогда, когда элементарные кирпичики материала — не молекулы, а наночастицы размером лишь в несколько нанометров в диаметре, но собранные в нагромождения из тысяч и тысяч атомов.

Особенное структурирование вещества ради получения материала с желательными свойствами известно давно да и применяется с незапамятных времен. Еще в античные времена умели вплавлять наночастицы меди в стекло, чтобы стекло стало красноватым. Растворяемые краски тоже содержали наночастицы в эмульсии. Угольная или ламповая — она же голландская — сажа тоже состоит из частиц углерода диаметром от 10 до 1000 нм. Об этом писали еще в учебниках в XIX веке. И такие же наночастицы служат — и всегда служили — красителями в чернилах и туши. Те же наночастицы сажи в 1917 году стали добавлять в надувные шины, чтобы служили подольше. Наночастицы платины, родия, палладия работают в автомобильных каталитических конвертерах: они сидят в крошечных порах керамического блока — поры в керамике увеличивают площадь ее соприкосновения с выхлопным газом. Наночастицы ускоряют химические реакции, в результате которых содержащиеся в выхлопных газах оксид углерода (угарный газ) и оксиды азота превращаются в воду и диоксид углерода (углекислый газ).

Новизна наноматериалов по сравнению с материалами традиционными состоит в химической структуре повторяющегося основного мотива, который становится много сложнее. Возделывающие ниву наноматериалов и не заглядывают на поля монументализации, где молекула становится машиной, — они полагают, что ей уготована участь элементарного кирпичика для построения наноматериала. Наноматериалы — это такая необъятная область исследований, что ей следовало бы посвятить отдельную книгу. И не одну. Но никакого отношения к нанотехнологии наноматериалы не имеют.

Немало ученых, как и встарь, видят в молекуле всего лишь маленький «кусочек» вещества. А разговоры последних лет о молекулах-машинах научная среда нередко встречала насмешками, хотя это давно уже не просто разговоры, речь идет о реальных экспериментах. Молекула коренным образом изменила свой статус и, утратив анонимность, вышла из толпы множества себе подобных и равно безликих, чтобы обрести индивидуальность, — и как только у молекулы появилось «лицо», так она выказала неслыханную доступность по отношению к измерительным приборам и процедурам. Откликаясь на вызов, брошенный монументализацией, мы должны отыскать новаторские способы и приемы изготовления подобных молекул-приборов и молекул-машин, добиваясь, чтобы такая огромная молекула содержала ровно столько атомов, сколько требуется для выполнения ее работы, и не больше. И понятно, никто не скажет, до каких размеров и до какой сложности дорастут эти машины.

Глава 5

Наннобактерии

Из элементарного кирпичика, затерянного среди миллиардов миллиардов многих иных таких же кирпичиков, молекула за какие-то пятнадцать лет превратилась в нечто вполне самостоятельное. Теперь она может воплотиться в научный прибор или в сложную установку, а то и машину, и эти новые роли молекулы становятся все сложнее и многочисленнее, ей под силу все более трудные дела, и со дня на день должна прилететь весточка об успешной монументальной сборке молекулы-машины. Раз уж нам удалось понять, как собираются белки, мембраны и рибосомы в живой клетке, то неужели мы не сумеем воспроизвести структуру и организацию хотя бы самых простейших, но и самых крошечных форм жизни? А вдруг, когда мы соберем все составляющие вместе, получится искусственная клетка и эта клетка окажется живой?

1 ... 20 21 22 23 24 25 26 27 28 ... 38
На этой странице вы можете бесплатно читать книгу Нанонауки. Невидимая революция - Жоаким Кристиан бесплатно.
Похожие на Нанонауки. Невидимая революция - Жоаким Кристиан книги

Оставить комментарий

Рейтинговые книги