Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин
0/0

Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин

Уважаемые читатели!
Тут можно читать бесплатно Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин. Жанр: Физика. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин:
Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы-Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мульти-вселенные — вот далеко не полный перечень обсуждаемых вопросов. Используя ясные аналогии, автор переводит сложные идеи современной физики и математики на образы, понятные всем и каждому. Брайан Грин срывает завесу таинства с теории струн, чтобы представить миру 11-мерную Вселенную, в которой ткань пространства рвется и восстанавливается, а вся материя порождена вибрациями микроскопических струн. Книга вызовет несомненный интерес как у специалистов естественно-научных дисциплин, так и у широкого круга читателей.
Читем онлайн Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 16 17 18 19 20 21 22 23 24 ... 116

В качестве примера на рис. 3.2 приведены три окружности одинакового радиуса. Длины этих окружностей различны. Длина окружности (б), нарисованной на искривленной поверхности сферы, меньше длины окружности (а), нарисованной на плоской поверхности, несмотря на то, что они имеют одинаковый радиус. Искривленный характер поверхности сферы приводит к тому, что радиальные линии, проведенные из центра, слегка сходятся друг к другу, приводя к небольшому уменьшению длины окружности.

Рис. 3.2. Окружность, нарисованная на поверхности сферы (б), имеет меньшую длину, чем окружность, нарисованная на плоском листе бумаги (а), а окружность, начерченная на седлообразной поверхности, будет иметь большую длину, несмотря на то, что все три имеют одинаковый радиус.

Длина окружности (в), нарисованной на седловидной искривленной поверхности, больше, чем длина окружности, изображенной на плоской поверхности. Свойства кривизны седловидной поверхности приводят к тому, что радиальные линии слегка расходятся, вызывая небольшое увеличение длины окружности. Эти наблюдения показывают, что отношение длины окружности к радиусу для (б) будет меньше, чем 2π, а для (в) — больше, чем 2π. Но отклонения от значения 2π, особенно в сторону увеличения, как в примере (в), — это как раз то, что было обнаружено в случае вращающегося аттракциона. Подобные наблюдения привели Эйнштейна к идее, что нарушение «обычной», евклидовой геометрии объясняется кривизной пространства. Плоская геометрия древних греков, которой тысячи лет учат школьников, попросту не применима к объектам на вращающемся круге. Вместо этого здесь имеет место ее обобщение на случай искривленного пространства, схематически показанное на рис. 3.2в.[19]

Итак, Эйнштейн понял, что установленные древними греками привычные пространственные геометрические отношения, которые верны для «плоских» пространственных фигур, таких, как окружность на плоском столе, не выполняются с точки зрения наблюдателя, испытывающего ускорение. Конечно, мы рассмотрели здесь только один, конкретный вид ускоренного движения, но Эйнштейн показал, что аналогичный результат — искривление пространства — справедлив для всех случаев ускоренного движения.

В действительности, ускоренное движение приводит не только к искривлению пространства, но и к аналогичному искривлению времени. (Исторически Эйнштейн сначала сосредоточил внимание на кривизне времени, и только потом осознал важность кривизны пространства.)[20] То, что время также подвергается искривлению, неудивительно — в главе 2 мы уже видели, что специальная теория относительности провозглашает союз пространства и времени. Это слияние было подытожено поэтическими словами Минковского, который на лекции по специальной теории относительности в 1908 г. сказал: «Отныне пространство и время, рассматриваемые отдельно и независимо, обращаются в тени и только их соединение сохраняет самостоятельность».[21] Пользуясь более приземленным, но столь же вольным языком, можно сказать, что сплетая пространство и время в единую ткань пространства-времени, специальная теория относительности провозглашает: «То, что истинно для пространства, то истинно и для времени». Однако здесь возникает вопрос. Мы можем представить себе искривленное пространство, зная, как искривлена его форма, но что мы имеем в виду, говоря о кривизне времени?

Для того чтобы нащупать ответ, еще раз посадим Слима и Джима на аттракцион и попросим их провести следующий эксперимент. Слим будет стоять на краю радиального отрезка спиной к кругу, а Джим будет медленно ползти к нему вдоль этого радиуса от центра круга. Через каждые несколько метров Джим будет останавливаться, и они будут сравнивать показания своих часов. Что они увидят? Наблюдая со своей позиции с высоты птичьего полета, мы снова сможем предсказать ответ. Их часы будут расходиться в показаниях. Мы пришли к этому выводу потому, что увидели, что Слим и Джим движутся с разной скоростью — при движении на аттракционе чем дальше от центра вы находитесь, тем большее расстояние должны пройти для того, чтобы совершить один оборот и, следовательно, тем быстрее вы движетесь. Но, согласно специальной теории относительности, чем быстрее вы движетесь, тем медленнее идут ваши часы — из этого мы заключаем, что часы Слима будут идти медленнее, чем часы Джима. Далее, Слим и Джим обнаружат, что по мере того как Джим будет приближаться к Слиму, его часы будут идти все медленнее, и скорость их хода будет становиться такой же, как у часов Слима. Это отражает тот факт, что по мере приближения Джима к краю круга, его скорость приближается к скорости Слима.

Мы приходим к выводу, что для наблюдателей на вращающемся круге, таких как Слим и Джим, скорость течения времени зависит от их положения — в нашем случае от их расстояния до центра круга. Это является иллюстрацией того, что мы понимаем под кривизной времени. Время искривлено, если скорость его хода изменяется от одной точки к другой. Важно подчеркнуть, что Джим заметит кое-что еще, когда будет ползти вдоль радиуса. Он почувствует возрастающую силу, выталкивающую его с круга, поскольку не только скорость, но и ускорение увеличиваются по мере удаления от центра круга. Используя наш аттракцион, мы видим, что большее ускорение связано с более сильным замедлением хода часов, — т.е. большее ускорение приводит к более значительному искривлению времени.

Эти наблюдения дали возможность Эйнштейну сделать заключительный шаг. Поскольку он уже показал, что гравитацию и ускоренное движение нельзя по существу различить, и поскольку, как он показал теперь, ускоренное движение связано с искривлением пространства и времени, он сделал следующее предположение о внутреннем содержании «черного ящика» гравитации, механизме, с помощью которого действует гравитация. Согласно Эйнштейну, гравитация представляет собой искривление пространства и времени. Посмотрим, что это означает.

Основы общей теории относительности

Чтобы почувствовать, в чем суть нового представления о гравитации, рассмотрим типичную ситуацию, в которой планета типа нашей Земли вращается вокруг звезды, похожей на наше Солнце. В ньютоновской теории гравитации Солнце удерживает Землю на некоей неопределяемой «привязи», которая каким-то образом мгновенно преодолевает огромные расстояния в пространстве и захватывает Землю (аналогичным образом и Земля захватывает Солнце). Эйнштейн предложил новую концепцию того, что происходит. Нам будет удобнее обсуждать подход Эйнштейна, имея конкретную наглядную модель пространства-времени, которой было бы удобно манипулировать. Для этого сделаем два упрощения. Во-первых, на какое-то время забудем о времени и сконцентрируемся исключительно на наглядной модели пространства. Позже мы вновь включим время в наше обсуждение. Во-вторых, для того, чтобы иметь возможность рисовать модели и размешать рисунки на страницах этой книги, мы часто будем использовать двумерные аналоги трехмерного пространства. Большинство выводов, которые мы получим, работая с моделями более низких размерностей, непосредственно применимо к физической трехмерной среде, поэтому более простые модели представляют собой прекрасные средства для объяснения и обучения.

Используя эти упрощения, мы изобразили на рис. 3.3 двумерную модель области нашей Вселенной.

Рис. 3.3. Схематическое представление плоского пространства.

Координатная сетка удобна для указания положения, точно так же, как сеть улиц позволяет описать местонахождение в городе. При задании адреса в городе, кроме положения на двумерной сетке улиц, указывается также положение по вертикали, например, указание этажа. Для облегчения визуального восприятия будем отбрасывать третье измерение в наших двумерных моделях.

Эйнштейн высказал предположение, что в отсутствие материи и энергии пространство будет плоским. На языке двумерных моделей это означает, что «форма» пространства должна быть плоской, подобно поверхности гладкого стола, как показано на рис. 3.3. Это изображение пространственной структуры нашей Вселенной, которое было общепринятым в течение тысяч лет. Но что произойдет с пространством, если в нем присутствует массивный объект, подобный Солнцу? До Эйнштейна ответом на этот вопрос было слово «ничего»: пространство (и время) считались инертной средой, сценой, на которой события в жизни Вселенной развивались сами по себе. Однако цепочка рассуждений Эйнштейна, которую мы рассмотрели выше, приводит к другому выводу.

Массивное тело, подобно нашему Солнцу, а на самом деле любое тело, оказывает гравитационное воздействие на другие тела. В примере с бомбой террориста мы установили, что действие гравитационных сил неотличимо от действия ускоренного движения. Пример с аттракционом Верхом на торнадо показал, что математическое описание ускоренного движения требует введения искривленного пространства. Эта связь между гравитацией, ускоренным движением и кривизной пространства привела Эйнштейна к блестящей догадке: присутствие массивного тела, подобного нашему Солнцу, приводит к тому, что структура пространства вокруг этого тела искривляется, как показано на рис. 3.4.

1 ... 16 17 18 19 20 21 22 23 24 ... 116
На этой странице вы можете бесплатно читать книгу Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин бесплатно.

Оставить комментарий

Рейтинговые книги