Эксперимент в хирургии - Владимир Кованов
0/0

Эксперимент в хирургии - Владимир Кованов

Уважаемые читатели!
Тут можно читать бесплатно Эксперимент в хирургии - Владимир Кованов. Жанр: Медицина. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Эксперимент в хирургии - Владимир Кованов:
Собака с двумя головами: реальность или фантастика? Можно ли вырастить «запасные части» для человека? Что лучше: регенерация органов или создание их искусственным путем? Об этом и о других проблемах современной экспериментальной хирургии рассказывает академик АМН СССР врач-хирург В. Кованов. Автор использовал некоторые материалы из своей книги, выпущенной издательством «Советская Россия», «Хирургия без чудес».
Читем онлайн Эксперимент в хирургии - Владимир Кованов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 47 48 49 50 51 52 53 54 55 ... 58

- биологическая инертность: отсутствие токсичности, аллергенности, травмирующего и раздражающего действия на окружающие ткани;

- механическая прочность, рассчитанная на длительный срок работы в организме, устойчивость к износу;

- гемосовместимость: материал не должен вызывать повреждения элементов крови и образования тромбов;

- устойчивость к агентам внутренней среды организма, к воздействию биологических жидкостей;

- устойчивость к высокотемпературной стерилизации.

История создания механических клапанов сердца - это во многом история поиска и внедрения новых конструкционных материалов. Первые модели ИКС были выполнены из полимеров. Им на смену пришли клапаны из металлов и сплавов. Самые последние модели ИКС изготовлены из графитсодержащих материалов. Каждый из этих материалов обладает определенными преимуществами, однако не лишен и весьма существенных недостатков. Поэтому поиск новых материалов, перспективных для создания сердечных клапанов протезов, продолжает оставаться весьма актуальной проблемой.

В последние годы внимание ученых и технологов многих стран привлечено к керамике - твердому материалу неорганической природы. Этот материал нашел такое широкое применение во многих областях науки и техники, что стали говорить о технологической революции, о том, что конец XX века стал эрой керамики. Высокая механическая прочность, сохраняющаяся даже при экстремальных температурах, большая коррозийная устойчивость, высокие электроизоляционные свойства обусловливают всевозрастающее применение керамики в различных областях техники и производства. Керамические материалы применяются для изготовления деталей и изделий, предназначенных для работы в любых агрессивных средах (кислотах, щелочах, расплавленных металлах), для создания двигателей и турбин, где они пришли на смену быстроизнашивающимся металлам. Керамика применяется даже для создания защитного слоя космических кораблей.

Среди большого разнообразия технических керамик особенно выделяется по механической прочности и химической стойкости корундовая керамика, основу которой составляет окись алюминия. Окись алюминия существует в виде нескольких кристаллических модификаций, из которых самой устойчивой является модификация, называемая корундом. Отсюда и название керамического материала. По своей структуре керамика представляет поликристаллический материал, ее также называют поликристаллическим сапфиром или рубином. Уникальные физические и химические свойства корундовых материалов определяются характером химической связи в молекуле Al2O5 и ее кристаллическим строением. Корундовая керамика обладает высокой стойкостью ко всем видам механических нагрузок. Так, предел прочности корундовой керамики при изгибе достигает 3000 кг/см2, а при сжатии - более 10000 кг/см2. В отличие от пластмасс и металлов она не деформируется при ударе, нагреве, высоком давлении. Такая высокая прочность керамики объясняется большой энергией кристаллической решетки (3681 ккал/моль), которая определяет прочность связей в кристалле.

Большое практическое значение имеет устойчивость корундовой керамики к износу при трении. Многие советские и зарубежные исследователи пришли к выводу, что при взаимодействии деталей из керамики износ практически отсутствует или крайне незначителен. Трение и износ керамических материалов гораздо меньше в растворе, чем в сухой среде. Коэффициент трения у пары керамика-керамика, помещенной в раствор, много меньше, чем у металлов, находящихся в аналогичных условиях.

В молекуле алюминий находится в максимально окисленном состоянии - каждый анион алюминия окружен шестью противоположно заряженными анионами кислорода. Подобные химические связи очень прочны, поэтому корундовые материалы устойчивы ко многим агрессивным факторам. Результаты испытаний корундовой керамики на растворимость в тканевой жидкости показали, что по коррозийной стойкости она не уступает золоту и платине.

Учитывая такое удачное сочетание физических и химических свойств корундовых материалов, в середине 70-х годов во многих странах мира стали проводить исследования, оценивающие возможность применения керамики в медицине. Приоритет применения корундовой керамики в медицине принадлежит ФРГ и США. Первыми в нашей стране эти материалы исследовали и применили в клинической практике работники Тбилисского медицинского института, врачи-травматологи О. Гудушаури, О. Омиадзе, Г. Думбадзе. В своих исследованиях они, в частности, показали, что корундовая керамика безвредна для организма теплокровных животных независимо от ее агрегатного состояния (порошок, гранулы, пластины) и способа введения в организм. Она не обладает местнораздражающим и общерезорбтивным действием как при непосредственном воздействии на организм, так и в отдаленные сроки после введения. Даже в тех случаях, когда биокерамические материалы подвергаются химической или биологической деградации, концентрация продуктов деградации в окружающих тканях настолько мала, что они легко контролируются регуляторными системами организма. Весьма существенно и то, что продукты деградации и износа корундовой керамики абсолютно нетоксичны.

Для сравнения следует отметить, что продукты износа политетрафторэтилена (тефлона), одного из самых биоинертных полимеров, вызывают резко выраженные воспалительные изменения в окружающих тканях.

Ученые многих стран пришли к выводу - корундовые материалы обладают биосовместимостью и вызывают минимальные изменения в окружающих тканях.

Высокая механическая прочность, биоинертность, отсутствие токсического влияния керамических материалов на организм, а также возможность изготавливать образцы эндопротезов любой величины и формы позволили широко использовать корундовую керамику в клинической практике. Наиболее широкое применение в медицине корундовые материалы нашли при замещении костей и суставов. В настоящее время керамические эндопротезы применяются практически во всех областях хирургической ортопедии: для пластики тазобедренного и других крупных суставов, протезирования крыши вертлужной впадины, замещения костей кисти, замещения части и целых длинных трубчатых костей, для внутрикостного соединения костей.

Применение корундовой керамики в травматологии и ортопедии позволило в более короткие сроки восстанавливать целостность кости при самых тяжелых ее дефектах. С успехом в травматологии применяется корундовый материал монокристаллического строения (монокристаллический корунд, он же лейкосапфир), из него изготовляют внутрикостные штифты, которые не требуют дальнейшего удаления. В последние годы корундовая керамика успешно используется при оперативных вмешательствах на позвоночнике: для эндопротезирования межпозвонковых дисков и замещения дефектов позвонков.

Корундовая керамика применяется для пластики костей черепа, орбиты, придаточных пазух и костей носа. В отоларингологии керамика применяется при слухоулучшающих операциях для протезирования слуховых косточек, а также для операций при хронических и экссудативных заболеваниях среднего уха.

В стоматологии корундовая керамика моно- и поликристаллического строения широко используется для пластики верхней и нижней челюстей и имплантации зубов.

Казалось бы, применение такого материала в офтальмологии невозможно, однако ученые-исследователи Тбилисского мединститута разработали погружные имплантаты из корундовой керамики для формирования подвижной культи после удаления глаза. Ф. Полак и Г. Хеймк (ФРГ) разработали протез роговицы, выполненный из корундовой керамики поликристаллического и монокристаллического строения, который своим основанием имплантируется глубоко в мягкие ткани глаза. Этот протез с успехом прошел клинические испытания.

Учитывая уникальные свойства корундовых материалов, а также успешный опыт их широкого клинического применения в различных областях медицины, исследователи посчитали весьма перспективным использование корундовых материалов для создания искусственных клапанов сердца. Поэтому в начале 80-х годов появились первые сообщения о попытках создания искусственных клапанов сердца из корундовых материалов. Английские ученые Г. Джентл и П. Сволс в 1980 году впервые сообщили о создании искусственного клапана сердца из корундовой керамики, который они создавали и исследовали в течение 7 лет. По мнению авторов, этот клапан обладает высокой устойчивостью к износу, что позволило назвать его «вечным». Кроме того, ученые предполагали, что этот клапан не будет вызывать выраженных тромбоэмболических осложнений. В дальнейшем такой двустворчатый клапан из пористой и непористой корундовой керамики исследовали в живом организме. Эксперименты по имплантации клапанов проводили на свиньях. Результаты операций на животных показали хорошую гемодинамическую функцию протеза, отсутствие выраженного повреждения форменных элементов крови и минимальную тромбогенность.

1 ... 47 48 49 50 51 52 53 54 55 ... 58
На этой странице вы можете бесплатно читать книгу Эксперимент в хирургии - Владимир Кованов бесплатно.

Оставить комментарий

Рейтинговые книги