Путешествие по Карликании и Аль-Джебре - Владимир Левшин
0/0

Путешествие по Карликании и Аль-Джебре - Владимир Левшин

Уважаемые читатели!
Тут можно читать бесплатно Путешествие по Карликании и Аль-Джебре - Владимир Левшин. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Путешествие по Карликании и Аль-Джебре - Владимир Левшин:
«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Аудиокнига "Путешествие по Карликании и Аль-Джебре"



📚 "Путешествие по Карликании и Аль-Джебре" - захватывающая аудиокнига, написанная Владимиром Левшиным. Вас ждет увлекательное приключение в мире математики и фантазии, где главный герой отправляется в путешествие, чтобы раскрыть тайны загадочных земель.



🔍 В центре сюжета - умный и отважный математик, который сталкивается с загадочными проблемами и задачами, требующими нестандартного мышления и логики. Вместе с ним вы отправитесь в увлекательное путешествие, где каждый шаг приведет к новому открытию и пониманию мира вокруг.



🎧 На сайте knigi-online.info вы можете бесплатно и без регистрации слушать аудиокниги онлайн на русском языке. Здесь собраны лучшие произведения разных жанров, включая бестселлеры и культовые книги. Погрузитесь в мир слова и фантазии вместе с нами!



Об авторе:


Владимир Левшин - талантливый писатель, чьи произведения покоряют сердца читателей своей глубиной и оригинальностью. Его книги отличаются увлекательным сюжетом и неожиданными поворотами, заставляя задуматься над важными жизненными вопросами.



Не пропустите возможность окунуться в увлекательное путешествие по миру математики и фантазии с аудиокнигой "Путешествие по Карликании и Аль-Джебре"! 🌟



Погрузитесь в мир знаний и приключений вместе с Владимиром Левшиным и его увлекательной аудиокнигой! 📖



Математика
Читем онлайн Путешествие по Карликании и Аль-Джебре - Владимир Левшин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 32 33 34 35 36 37 38 39 40 ... 46

— Такова шахская справедливость, — закончила свой рассказ Шестёрка. — А теперь прошу вас убедиться, что задача эта очень проста, но практически невыполнима. Число рисовых зёрен росло по такому правилу: 1, 2, 4, 8, 16, 32 и так далее. Каждое последующее число больше предыдущего в два раза.

Такой ряд чисел называется геометрической прогрессией. Только, пожалуйста, не путайте её с арифметической. В арифметической прогрессии каждое последующее число больше предыдущего на одно и то же число — оно называется разностью прогрессии. В геометрической прогрессии каждое последующее число больше предыдущего в одно и то же число раз, и число это называется знаменателем прогрессии.

В нашей задаче знаменатель прогрессии равен двум. Если хотите, эту прогрессию можно записать и так:

20, 21, 22, 23, 24, 25, 26…

Нетрудно догадаться, что на шестьдесят четвёртой клетке должно быть 263 — два в шестьдесят третьей степени зёрен, потому что на первую клетку приходится 20 — два в нулевой степени зёрен, то есть одно зерно. Но если вы попробуете сосчитать, чему равно два в шестьдесят третьей степени, вы ужаснётесь. Такого огромного количества зёрен никогда не смог бы раздобыть жестокий шах. Он не смог бы даже прочитать это число. Вот оно: 9 223 372 036 854 775 808 — девять квинтиллионов двести двадцать три квадриллиона триста семьдесят два триллиона тридцать шесть миллиардов восемьсот пятьдесят четыре миллиона семьсот семьдесят пять тысяч восемьсот восемь… Уф!

Попробуйте подсчитать, сколько это килограммов риса, если каждое зёрнышко в среднем весит 0, 0182 грамма. Знаете, что получится? Больше ста шестидесяти семи триллионов килограммов! Стоит ли доказывать, что моя задача хоть и проста, но практически невыполнима?

Шестёрка поклонилась и села. Ей долго хлопали. Потом поднялась латинская буква Эн. Она сказала так:

— Уважаемая Шестёрка познакомила нас с геометрической прогрессией, где все числа непрерывно растут. Такая прогрессия называется возрастающей. Я позволю себе занять ваше внимание сразу двумя геометрическими прогрессиями — возрастающей и убывающей. И сделаю это на одном и том же примере. Задача моя будет так же проста, как и предыдущая, и так же невыполнима. Моя предшественница рассказала прелестную указку об изобретателе шахмат и коварном шахе. Позвольте и мне задать рам задачу, связанную с шахматами.

Эн вынула из кармана платок, развернула его и показала публике. На платке были нарисованы шестьдесят четыре квадрата, чёрные и белые, — как и на шахматной доске.

— Будем считать, — продолжала Эн, — что этот платок заменяет нам шахматную доску. Обратите внимание — толщина платка равна 0,1 — одной десятой миллиметра. Складываю платок пополам. Теперь его толщина стала вдвое больше: две десятых миллиметра. Зато и площадь его Стала меньше в 2 раза. Складываю платок ещё раз вдвое. Теперь его толщина в 4 раза больше первоначальной, но и площадь уменьшилась в 4 раза. Попробуйте таким образом перегнуть платок 64 раза. — Эн бродила платок в зал, кто-то его подхватил и стал перегибать: раз, второй…

— Готово! Теперь видна только одна клетка. Площадь платка уменьшилась в шестьдесят четыре раза.

— Вы меня не поняли, — возразила Эн самонадеянному зрителю. — Я просила не площадь платка уменьшить в 64 раза, а перегнуть его 64 раза. А это совсем не одно и то же. Если бы вам удалось это сделать, толщина платка стала бы такой большой, что он перерос бы горы, миновал солнце и упёрся бы в какую-нибудь отдалённую звезду.

— А вы докажите! — крикнули в зале.

Тогда Эн стала решать задачу на доске.

— Неужели вы не догадались, что я почти повторила предыдущую задачу? После каждого перегибания толщина платка увеличивается вдвое и возрастает по закону геометрической прогрессии: 2, 4, 8, 16, 32, 64 и так далее. Разница только в том, что после шестидесяти четырёх перегибаний толщина платка станет больше не в 263, а в 264 раз. Оно и понятно: ведь эта прогрессия начинается не с 20 — двух в нулевой, а с 21 — двух в первой степени. Толщина развёрнутого платка 0,1 миллиметра. Чтобы вычислить толщину сложенного платка, надо 0,1 умножить на 264. Получается 1844674 407 371 километр.

Один триллион восемьсот сорок четыре миллиарда шестьсот семьдесят четыре миллиона четыреста семь тысяч триста семьдесят один километр.

А ведь расстояние от Земли до Солнца всего-навсего около ста пятидесяти миллионов километров!

Кажется, условие состязания выполнено: задача проста и практически невыполнима.

— А где же обещанная убывающая прогрессия? — спросил Сева.

— Да здесь же, — ответила Эн. — Ведь в то время как толщина платка увеличивается, площадь его все время уменьшается 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 и так далее. Это и есть убывающая геометрическая прогрессия. После шестидесяти четырёх перегибаний площадь станет в два, взятое в шестьдесят четвёртой степени раз, меньше первоначальной. И если бы складывали платок дальше, то она всё время приближалась бы к нулю, а толщина (или высота) стремилась бы к Великанам в Бесконечность. Вы согласны? Тогда благодарю за внимание.

В зале снова зашумели, захлопали. Барон Мюнхгаузен позвонил в колокольчик и сказал:

— Жюри одинаково восхищено и той и другой задачей. Обеим участницам вручается первый приз.

Он передал победительницам шахматные доски с красивыми фигурами из слоновой кости и добавил:

— Меня так заинтересовали оба выступления, что следующее путешествие я совершу в Бесконечность. А потом — кто знает? — может быть, доберусь и до Нуля!

Барон поклонился. Соревнования кончились, и мы отправились спать.

Ведь завтра нам идти на строительство! А перед этим не мешает хорошенько отдохнуть.

Олег.

Новые открытия нулика

(Нулик — отряду РВТ)

Здравствуйте, ребята! Ну и работу вы нам задали! Теперь мы только и делаем, что играем в шахматы. Каждый сам смастерил себе доску и фигуры. Играем с утра до вечера — то друг с другом, а то и каждый сам с собой. Но я всё-таки успел сделать открытие: по шахматной доске сразу видно, что Карликания и Аль-Джебра друзья. Ведь каждая шахматная клетка имеет своё обозначение, которое состоит из цифр и букв.

Например, е5, а4, d8. Разве это не доказательство дружбы?

Задачу с зёрнами всё-таки решили проверить. Конечно, без риса. Просто все стали писать на своих досках, сколько надо положить рисинок на каждую клетку:

1, 2, 4, 8, 16, 32, 64, 128… Когда заполнили первый ряд, выяснилось, что одни пишут слева направо, а другие справа налево.

Стали спорить, как надо писать. Положили две доски одну под другой. На одной числа написаны внизу, слева направо, на другой — вверху, справа налево.

Числа, одинаково отстоящие от края, оказались друг против друга. Прямо как на палке у фокусника!

Я попробовал сложить каждую пару, но одинаковых чисел не получилось. Понятно: ведь прогрессия-то не арифметическая, а геометрическая! Тогда я их перемножил и сделал второе открытие: все произведения оказались совершенно одинаковые:

1х128=128;

2х64=128;

4х32=128;

8х16=128.

Да, теперь я уже не тот Нулик, что прежде. Меня и вправду не узнать. А всё ваши письма!

Дальше считать зёрна никто не захотел — кому же охота писать такие огромные числа? Но один Нулик задал интересный вопрос: если на шестьдесят четвёртую клетку надо положить девять с лишним квинтиллионов зёрен, то сколько всего зёрен будет на доске, если, конечно, заполнить все клетки?

— Что тут думать! — сказал другой Нулик. — Всего на доске будет зёрен два в шестьдесят третьей степени. То есть вот эти девять квинтиллионов.

— Ничего подобного, — возразил третий, — девять квинтиллионов будет только на последней клетке, а на всей доске во много раз больше.

Они заспорили, а я снова посмотрел на свою шахматную доску, где в первом ряду написана геометрическая прогрессия: 1, 2, 4, 8, 16, 32, 64, 128.

После треугольника Паскаля я вообще стал очень внимательно рассматривать числа — всё время ищу закономерности! Вот и сейчас сложил первый член прогрессии со вторым: 1+2=3. Сумма их оказалась на единицу меньше третьего члена — четвёрки. Потом я сложил 1+2+4. Получилось семь. А это на единицу меньше восьми. 1+2+4+8=15. И это тоже меньше шестнадцати на единицу. Выходит, сумма всех предыдущих членов этой геометрической прогрессии меньше последующего всегда на единицу. А это значит, что на шестидесяти трёх клетках шахматной доски будет столько же зёрен, сколько на последней, шестьдесят четвёртой, только на одно зёрнышко меньше. А всего на доске зёрен будет в два раза больше, чем на последней клетке, минус единица:

1 ... 32 33 34 35 36 37 38 39 40 ... 46
На этой странице вы можете бесплатно читать книгу Путешествие по Карликании и Аль-Джебре - Владимир Левшин бесплатно.
Похожие на Путешествие по Карликании и Аль-Джебре - Владимир Левшин книги

Оставить комментарий

Рейтинговые книги