Путешествие по Карликании и Аль-Джебре - Владимир Левшин
- Дата:26.07.2024
- Категория: Научные и научно-популярные книги / Математика
- Название: Путешествие по Карликании и Аль-Джебре
- Автор: Владимир Левшин
- Просмотров:4
- Комментариев:0
Аудиокнига "Путешествие по Карликании и Аль-Джебре"
📚 "Путешествие по Карликании и Аль-Джебре" - захватывающая аудиокнига, написанная Владимиром Левшиным. Вас ждет увлекательное приключение в мире математики и фантазии, где главный герой отправляется в путешествие, чтобы раскрыть тайны загадочных земель.
🔍 В центре сюжета - умный и отважный математик, который сталкивается с загадочными проблемами и задачами, требующими нестандартного мышления и логики. Вместе с ним вы отправитесь в увлекательное путешествие, где каждый шаг приведет к новому открытию и пониманию мира вокруг.
🎧 На сайте knigi-online.info вы можете бесплатно и без регистрации слушать аудиокниги онлайн на русском языке. Здесь собраны лучшие произведения разных жанров, включая бестселлеры и культовые книги. Погрузитесь в мир слова и фантазии вместе с нами!
Об авторе:
Владимир Левшин - талантливый писатель, чьи произведения покоряют сердца читателей своей глубиной и оригинальностью. Его книги отличаются увлекательным сюжетом и неожиданными поворотами, заставляя задуматься над важными жизненными вопросами.
Не пропустите возможность окунуться в увлекательное путешествие по миру математики и фантазии с аудиокнигой "Путешествие по Карликании и Аль-Джебре"! 🌟
Погрузитесь в мир знаний и приключений вместе с Владимиром Левшиным и его увлекательной аудиокнигой! 📖
Математика
Шрифт:
Интервал:
Закладка:
Сейчас научные новости распространяются быстро. Ещё бы! Ведь у нас есть и печать, и радио, и телевидение! Но в далёкие времена ничего этого не было. И понадобилось двадцать веков, чтобы люди по достоинству оценили изобретение Аристотеля.
Это было начало новой эпохи в геометрии, физике, астрономии, химии и других науках. А, уж о математике и говорить нечего! Вряд ли сам Мухаммед ибн Муса аль-Хорезми мог мечтать о таком расцвете своего детища.
Не хочу этим сказать, что нашим учёным больше уже нечего делать. Ничего подобного! У науки нет предела. Развитие её бесконечно. А что такое Бесконечность, объяснять не нужно. Все вы это отлично знаете. Поэтому мы с особенным удовольствием приветствуем сегодня всех, кто изучает историю и законы нашего государства. Мы возлагаем на них особые надежды: ведь им предстоит решить многие нерешённые задачи!
Здесь вдруг оратор повернулся в нашу сторону и низко нам поклонился. И все сидящие на трибунах встали и громко зааплодировали.
От смущения мы просто не знали, куда деваться, и очень обрадовались, когда зрители снова уселись.
Но тут А скомандовал: «Поднять флаги!» — и все встали опять. Заиграла музыка, и в воздух взвились десятки разноцветных полотнищ. Среди них были флаги многих стран. Некоторые мы видели впервые, но наш — алый — узнали сразу!
Потом начался парад. На огромном зелёном поле появился движущийся помост. На помосте толпились костюмированные буквы и цифры.
Кого только здесь не было! И важные бородатые арабские мудрецы, и древние греки в белоснежных одеждах. Тут же сидели индийцы в тюрбанах и пёстрых халатах. Ах, Нулик! Это была целая костюмерная! У меня до сих пор в глазах рябит от фесок, тюбетеек, шаровар, пудреных париков, камзолов, фраков, сюртуков… Мы спросили у Дэ, что означает этот маскарад.
— Как?! Неужели вы не поняли? Перед вами учёные, которым посвящён сегодняшний праздник. Они совершают круг почёта. Впереди в белой чалме Мухаммед аль-Хорезми, рядом — Аристотель.
— А это кто? — Сева указал на длиннокудрую маску в плаще и широкополой шляпе с перьями.
— Знаменитый французский математик Виéт. Ему мы обязаны тем, что буквы в шестнадцатом веке получили наконец всеобщее признание. Справа от него стоит другой великий француз — математик и философ Рене Декарт. Он жил несколько позже, в семнадцатом веке, и тоже многое сделал для Аль-Джебры.
— А вот и ещё один древний грек! — обрадовалась я.
— Вы, наверное, говорите о Диофанте? — догадался Дэ. — О, это замечательный человек! Ещё в третьем веке нашей эры он решал сложнейшие алгебраические задачи. Диофант изложил их в своей знаменитой книге «Арифметика». Правильнее было бы назвать её «Алгебра», но тогда этого слова ещё не знали.
— На полях «Арифметики» Диофанта записал свою теорему Ферма, — сказал Олег.
Дэ посмотрел на него недоверчиво:
— Вы знакомы с Ферма? С великим французским математиком?
— Мы встречались с ним на Дороге Светлого Разума, когда возвращались из Карликании. Да вот он, рядом с Диофантом!
— Ребята, ребята, смотрите, Лобачевский! — тормошил нас Сева.
— Как, вы и Николая Ивановича знаете? — ещё больше изумился Дэ.
— Конечно! — важно ответил Сева. — Он нам и письмо прислал: «Кажется, нельзя сомневаться… в истине того, что всё в мире может быть представлено числами».
— И буквами, — добавил Дэ. — Уверен, Лобачевский не сказал так лишь потому, что это само собой разумеется.
Платформа с учёными сделала три круга и покинула поле под гром приветствий.
И тогда началось самое интересное.
Но об этом тебе расскажет Сева. Так что жди письма.
Таня.
Не думай, что я такая умная и запомнила всё, что говорил А.
Речь его была тут же отпечатана и размножена. Мне оставалось только переписать. А листок я сохранила на память.
Разноцветные береты
(Нулик — отряду РВТ)
Дорогие ребята! Как же мне досадно, как обидно, что я не был на стадионе!
Но зато я сделал важное открытие. То есть открытие сделала мама. И вообще это не открытие, а давно известная вещь. Но для меня она была открытием.
Дело было так.
Мои ученики тоже решили устроить карнавал. И семь Нуликов явились в школу в новеньких беретах, все береты разных цветов: красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый. Словом, семь цветов радуги. Нулики в беретах должны были идти во главе карнавального шествия. Но мне не понравилось, в каком порядке они стоят. Мне показалось, что красный берет должен быть рядом с синим, а синий — с оранжевым. А другому Нулику захотелось, чтобы жёлтый был рядом с фиолетовым. Тут каждый стал вносить свои предложения:
— Жёлтый с красным!
— Красный с синим!
— Фиолетовый с жёлтым!
Все так расшумелись, что я долго не мог их успокоить. Порешили перепробовать все перестановки. А потом большинством голосов выбрать самую красивую.
И началось! Расставили Нуликов так, как они стояли вначале: красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый.
Потом Нулики стали меняться местами. Красный оказался на месте оранжевого, потом перешёл на место жёлтого, потом на место зелёного и так до тех пор, пока он не очутился на месте фиолетового. Теперь впереди оказался Нулик в оранжевом берете. Мы стали его тоже постепенно передвигать вправо. Так же поступили и с зелёным, и со всеми остальными. А когда красный берет опять оказался первым слева, мы решили его оставить на месте и стали двигать вправо другие береты: жёлтый, зелёный, синий… Переставляем, переставляем… Второй день переставляем. О карнавале никто уж не заикается. Сделали 527 перестановок, а до конца — далеко.
Мы было хотели бросить, но тут появилась моя мама. Пришлось рассказать, в чём дело. А она давай смеяться! А когда отсмеялась, спросила:
— Неужели вы не знаете, что такое факториал?
— Знаю! — выпалил я, вспомнив ваше письмо. — Это оркестр восклицательных знаков.
Мама стала смеяться снова. А потом сказала, что факториалы могут, конечно, играть в оркестре. Но это не мешает им оставаться математическим знаком. Его ставят после какого-нибудь числа. И тогда он показывает, сколько чисел натурального ряда надо перемножить. Вот например: если написать 3! — значит, надо перемножить все числа натурального ряда от единицы до трёх включительно:
3!=12·3=6.
А записывается это так, чтобы было покороче. Задумали перемножить числа от единицы до миллиона — пожалуйста: пишем 1 000 000!. Коротко и ясно.
А ещё мама сказала, что слово «факториал» произошло от латинского слова «фактор». По-нашему — это «производящий действие». Вот факториал и производит перемножение чисел натурального ряда.
Ну, это я запомнил сразу. Одного только никак не мог понять: при чём здесь разноцветные береты?
— А вот при чём, — сказала мама. — Если вы хотите узнать, сколько раз надо переставить семь Нуликов в разноцветных беретах, чтобы сделать все возможные перестановки, надо вычислить факториал числа семь, то есть перемножить все числа натурального ряда от единицы до семи.
Стали перемножать и получили большущее число:
7!=12·3·4·5·6·7=5040.
Пять тысяч сорок! Пять тысяч сорок перестановок! А мы сделали всего 527. Ужас!..
Хорошо, что в разноцветных беретах явились всего семь Нуликов. А что если бы двадцать семь? Пришлось бы вычислять факториал двадцати семи. Нет уж, дудки! Хотите — считайте сами. А я не буду.
Всего вам хорошего. С нетерпением жду новых сообщений.
Нулик-Факториал.
Репортаж со стадиона
(Сева — Нулику)
Внимание, внимание! Говорят все радиостанции Аль-Джебры! Начинаем репортаж с Центрального стадиона. Здесь сейчас будут выступать самые юные гимнасты страны.
Слышите гул приветствий? Это на поле выбегают дошкольники — латинские буковки a в зелёных костюмах, за ними буковки b — они в красном, и, наконец, с — в светло-жёлтом. Они образуют несколько рядов и замирают. Теперь каждая из них не просто буква. Здесь она называется одночлен.
Сверху нам открывается чудесное зрелище: пёстрый прямоугольник из букв! Но вот грянул оркестр факториалов. Звучит вальс, и прямоугольник приходит в движение. Буквы делают шаг в сторону. Одни вправо, другие влево. Потом они берутся за руки, и вот уже перед нами десятки разноцветных пар:
ab, ac, bc.
Зелёное с красным, жёлтое с зелёным, красное с жёлтым…
- Когда Стихиям нечем заняться - Наталья Козьякова - Прочие приключения / Периодические издания / Фэнтези
- Три дня без любви (поветь, рассказы) - Андрей Кивинов - Юмористическая проза
- Взлеты и падения страны Кемет в период Древнего и Среднего царств - Владимир Андриенко - История
- Два дня - Чесноков Дмитрий - Технофэнтези
- Калила и Димна - Абдаллах аль-Мукаффа - Классическая проза