Хаос и структура - Алексей Лосев
0/0

Хаос и структура - Алексей Лосев

Уважаемые читатели!
Тут можно читать бесплатно Хаос и структура - Алексей Лосев. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Хаос и структура - Алексей Лосев:
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
Читем онлайн Хаос и структура - Алексей Лосев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 162 163 164 165 166 167 168 169 170 ... 219

Во–вторых, как относятся между собою признаки понятия! Традиционная теория ограничивается здесь только «перечислением» признаков. Но это, конечно, не есть решение вопроса. Тут у школьных авторов тоже очень простой способ рассуждения — это сведение логики на вложение неподвижных вещественных объемов друг в друга. На самом же деле признаки понятия не просто наличны в понятии, но еще и определенным образом соотносятся. Если мяч мы будем определять как «резиновый шар с нагнетенным воздухом», то только слишком примитивная логика может говорить, что понятие мяча «состоит из признаков» — «резина», «шар», «нагнетать» и «воздух». Эти признаки, кроме того, что они наличны, еще и находятся в настолько точном и нерушимом соотношении, что их можно употреблять только в таком виде, а не иначе. Например, «резина» здесь есть только свойство, или качество, «шара», и ни в каком другом соотношении эти два признака между собою не находятся. Тут нельзя мыслить такие соотношения, как «резина» и «шар» или «резина без шара». Одно дело — «дом отца», другое дело — «отец дома». Предлог «с» в нашем определении шара вовсе не есть нечто необязательное или неопределенное, равно как это же есть и просто признак. Это вполне определенное соотношение между двумя (или несколькими) совершенно определенными признаками.

Вот это–то очень важное обстоятельство для характеристики взаимоотношения признаков и фиксируется с замечательной простотой при помощи категории функции. То, что понятие мы интерпретируем как функцию, это и есть попытка взять совокупность признаков понятия как результат соотношений, а не как просто формально перечисляемую сумму признаков вне всякой зависимости от их последовательности или взаимоотношения. Функция данного аргумента ведь есть не что иное, как результат определенного ряда действий, произведенных над аргументом. Если понятие у нас есть производная функция, то этим достаточно четко рисуется то, что в понятии признаки не просто перечислены, но еще и определенным образом соотнесены.

И наконец, в–третьих, каково логическое отношение понятия о вещи к самой вещи? Если миновать огромное количество ответов на этот вопрос, устаревших в настоящее время, и взять ответ наиболее у нас современный, то самое большее нам скажут, что это отношение есть отражение. Спору нет о том, что это — ответ наилучший. Однако он до чрезвычайности общий, и непроработка его грозит превратить все учение об отражении в простую фразу.

Конечно, понятие вещи есть отражение самой вещи. Но какое? Не всякое же отражение есть понятие. Прежде всего, это есть существенное отражение, отражение сущности вещи. Далее, сущность, или существо, вещи есть функция вещи. Хотя между вещью и ее смыслом существует не только функциональное отношение, но для логики важно, что тут наличествует именно функциональное отношение. Однако мало и этого. Не всякая сущность, или смысл, вещи есть понятие, и не всякая функция смысла есть понятие. Мы можем сколько угодно владеть смыслом вещи, но в то же время — не иметь понятия вещи. Ребенок, впервые натыкающийся на огонь и судорожно отдергивающий руку от него, прекрасно узнает смысл огня; но это еще не значит, что он владеет понятием огня. Понятие есть нечто гораздо более развитое, чем смысл. Понятие есть нечто такое, что есть результат сопоставления понимания с другими пониманиями, это понимание, соотнесенное со всем другим, ориентированное среди прочего, оформленное и осуществленное.

Таким образом, то, что называется понятием как совокупностью признаков, есть не просто отражение вещи, но известного рода переработка этого отражения. Метод бесконечно–малых мощно и отчетливо гласит, что эта переработка есть не что иное, как дифференцирование, или получение производной. Означенная переработка происходит здесь, как мы узнали выше, в переходе в становление, зависимое от становления вещи, и в переходе этой зависимости двух становлений к пределу.

Инфинитезимальная теория прекрасно рисует познавательную роль понятия, в то время как традиционная теория касается этого только в своем учении о происхождении понятия (априорном или чувственном), а происхождение ровно ничего не говорит на тему о логической и познавательной значимости и уже предполагает эту значимость известной (так, Кант учит вовсе не о том, что такое пространство, но о том, как и откуда оно происходит; а что такое само–то пространство, это уже ему известно до исследования). Инфинитезимальная же теория в нашем построении исследует в первую голову вопрос о познавательной и логической значимости понятия.

Понятие вещи есть отражение вещи. Однако это будет пустой и незначащей фразой, если мы четко не покажем конкретного строения самого понятия. Если понятие есть такое отражение, что оно есть абстрактная общность, не имеющая никакого отношения к индивидуальным вещам и к индивидуальным представлениям, то какое же это отражение? Это — пустая фраза, а не отражение. Если же понятие всерьез отражает вещь, то его общность должна сохранить в себе все бесконечное богатство индивидуального, что есть в вещах данного рода. Но так как это индивидуальное нельзя понимать здесь буквально (ибо тогда общее понятие просто растворилось бы в море частностей), то оно дано здесь как принцип получения индивидуального во всем его бесконечном и непрерывном нарастании, как метод охвата всех индивидуальных явлений, сюда относящихся, как закон непрерывного становления данного общего в любой частной и случайной обстановке, предел этого становления.

Такое вот понимание общего понятия действительно и всерьез хочет выставить на первый план именно познавательную роль понятия и показать ее на структуре самого понятия, а не отделаться здесь пустой и ничего не говорящей фразой. Но это понимание—всецело инфинитезимальное. Если понятие, дифференцируясь, создает свою производную функцию, то этим сразу охватывается и то, что оно есть отражение вещи, и то, что как сама вещь, так и оно само находятся в непрерывном становлении, и то, что оно содержит в себе принцип охвата бесконечного богатства относящихся к нему изменений материального мира.

Так три огромных вопроса о логической природе понятия (а стало быть, и мышления) получают с точки зрения учения о бесконечно–малых одно из самых глубоких и оригинальных решений.

Если мы хорошо усвоили понятие производной, можно перейти наконец и к понятиям дифференциала и интеграла в логике. После всего предыдущего исследования оно уже не составит для нас больших трудностей.

10. ДИФФЕРЕНЦИАЛ В ЛОГИКЕ

1. Для усвоения дифференциала как логической категории посмотрим, как рассуждают математики в их собственной науке.

Чтобы получить категорию дифференциала, уже надо иметь категорию производной. Что такое производная, мы знаем. Допустим, что у нас уже имеется производная у' от какой–нибудь функции у. Возьмем какое–нибудь любое, т. е. совершенно произвольное, приращение независимого переменного ∆х и возьмем произведение данной производной на это произвольно выбранное приращение х. Это произведение

dy=y'∆x

и есть не что иное, как дифференциал функции у.

Для тех, кто не имеет математического образования и сталкивается с этим выражением впервые, необходимо заметить, что выражение это имеет мало общего с получением производной. Хотя произвольно выбранное приращение независимого переменного, а значит, и сам дифференциал неизменно текут и непрерывно становятся, самый этот процесс бесконечно малого становления скрыт[207] здесь только в самой производной, но совершенно не имеется в виду ни в том, ни в другом приращении. Приращение независимого переменного Ах есть нечто совершенно не зависящее от нас, нечто вполне произвольное; это какое угодно приращение, а не только то бесконечно–малое, которое было нам необходимо для получения производной. В связи с этим и дифференциал, хотя он даже в двойном смысле предполагает непрерывность становления, во–первых, ту, благодаря которой возникает производная, и, во–вторых, свою собственную, — сам по себе все же является некоей определенной и устойчивой величиной и есть не становление, но результат этого становления, т. е. ставшее.

Математики говорят—очень выразительно — еще и так. Дифференциал функции есть функция двух разных переменных, ибо и производная, и произвольное приращение Δx тут совершенно независимы друг от друга. Произвольное приращение независимого переменного потому и называется произвольным, что оно не связано здесь никакими условиями. Α ∆х входившее у нас для получения производной, как бесконечно–малое не имеет ничего общего с нашим теперешним ‹∆у.

Предыдущее определение дифференциала функции мы можем определить и несколько иначе, давши более симметричную формулу. А именно, что такое это ΔχΊ Чтобы ответить на этот вопрос, определим, что такое был бы дифференциал от х, т. е. для случая, если функцией от χ является сам же χΊ Так как производная от самого независимого переменного равняется единице, то приведенную выше формулу мы можем переписать так:

1 ... 162 163 164 165 166 167 168 169 170 ... 219
На этой странице вы можете бесплатно читать книгу Хаос и структура - Алексей Лосев бесплатно.

Оставить комментарий

Рейтинговые книги