Хаос и структура - Алексей Лосев
- Дата:13.12.2024
- Категория: Научные и научно-популярные книги / Математика
- Название: Хаос и структура
- Автор: Алексей Лосев
- Просмотров:0
- Комментариев:0
Шрифт:
Интервал:
Закладка:
Эту картину надо усвоить точнейшим образом, иначе нечего и думать проникнуть в логические секреты математического анализа. Чтобы понять этот последний, и в частности категорию производной, надо вытравить в себе решительно все эти навыки формально–логической метафизической неподвижности. Надо с корнем вырвать у себя все эти заскорузлые представления о неподвижности понятий. И потому никакое повторение и разъяснение этой идеи о непрерывной текучести никогда не может быть у нас лишним.
Поскольку существенное отражение вещи сравнивается теперь с самой вещью как нечто целое, а самая вещь представляется непрерывно становящейся, то и дробление едино–цельного смысла вещи также становится обязательно непрерывным. Видовые различия, зарождающиеся на фоне рода, тоже должны зарождаться непрерывно, путем сдвигов, едва отличающихся от нуля, путем бесконечно–малых приращений. Вопреки мертвому механицизму обычной логики, оперирующей закостенелыми родами, видами и признаками, мы должны требовать, чтобы признаки понятия возникали путем бесконечно–малых нарастаний, чтобы и они вливались один в другой, непрерывно становились, непрерывно и сплош–но наполняли все понятие.
6. Разумеется, остановиться на этом нельзя. Одна чистая непрерывность была бы смертью для мышления и познания. Но как же тогда надо учить о видовых различиях понятия и, значит, о развитой совокупности понятия, чтобы не погибла его непрерывность и чтобы оно все же было раздельным в себе? Совершенно ясно, что для избежания полного растворения в этой непрерывности необходимо овладеть ее законом, так чтобы сразу получили и бесконечно–мало дробимый смысл, и в то же время общий закон этого дробления. А так как дробление это есть результат сопоставления смысла вещи как чего–то целого с самой вещью, то этот закон должен быть также и законом ориентации изучаемого нами смысла вещи, отраженного в мышлении, на фоне становления самой вещи.
Другими словами, в нашем видовом понятии дома, дерева, сада и т. д. мы должны теперь найти некую твердую и существенную структуру, которая бы уже не менялась при переходе от одного вида к другому и которая бы уже не была связана с внешними свойствами данного вида так слепо и неотчленимо. Эта–то структура и есть закон для всех этих соотношений смысла вещи с самой вещью, т. е. для всех возможных здесь видовых понятий и развитой совокупности признаков. Вещей—множество, и они непрерывно меняются; их свойства стихийно вливаются одно в другое до полной неразличимости. Но есть закон для этих непрерывных изменений вещи, который внедряется в поток непрерывности и делает его раздельным и устойчивым. Он так же необходим для мышления, как необходима и непрерывность, ибо одна чистая непрерывность будучи абсолютной неразличимостью, есть такая же гибель для мышления, как и чистая прерывность. Чистая прерывность убивает в мысли ее жизнь, а чистая непрерывность убивает в ней смысл.
Тут–то вот и залегают признаки понятия в их реальном научном употреблении, которые и есть не что иное, как само же понятие, но в его сопоставлении с вещью, т. е. представленное в дробном виде. И дробность эта, будучи результатом становления, уже не есть та дискретная дробность признаков, о которой учит школьная логика, но дробность существенно связанная с непрерывным становлением понятия. Она есть именно устойчивый закон этого становления, предел этого становления, направление этого становления, смысл этого становления. Печать этого закона становления лежит на всем становлении, на каждом мельчайшем его мгновении (ибо это последнее может быть определено и вычислено, если известен общий закон, или направление, данного становления), а на самом законе лежит печать этого становления (ибо закон этот, будучи предельным и нестановящимся, есть все же закон не чего иного, но именно становления). Так дробится единая и неделимая функция смысла вещи, отраженного в мышлении, на бесконечное количество непрерывно нарастающих функций смыслов; и так возникает закон, предел, направление этого непрерывного процесса нарастания смысла вещи в зависимости от непрерывного нарастания самой вещи.
7. Попробуем теперь провести аналогию с дифференциальным исчислением более точно. Вспомним элементарное геометрическое истолкование производной в анализе и сравним с этим то, что в логике называется определением понятия через совокупность признаков.
Пусть мы имеем прямоугольные оси координат, т. е. горизонтальную ось абсцисс, или ось jc–ob, и вертикальную ось ординат, или ось у–оъ. Пусть у есть какая–нибудь функция от х. Тогда эта функция геометрически изобразится в виде некоей кривой. Значит, если ось абсцисс есть линия изменения вещи, а ось ординат—линия изменения отражения или мышления, то полученная у нас кривая у=ƒ(x) есть цельное и неделимое существенное отражение данной вещи в мышлении, некий законченный результат и образ этого отражения. Эта кривая есть цельный и существенный образ некоего материально независимого переменного; и она тут имеет значение как нечто едино–неделимое, как таковая.
Согласившись с этой простейшей установкой, спросим себя: что значит дифференцировать эту функцию, принявшую у нас геометрический образ данной кривой? Мы берем на этой кривой какие–нибудь две точки МиМ'и сравниваем поведение кривой (или ее направление) в этих точках с осью jc–ob. Мы сразу замечаем, что кривая в этих точках по–разному наклонена к оси х–ов, кроме того, в одной точке, М, кривая, скажем, дальше от оси х–оъ, в другой, М она ближе к этой оси. Это обстоятельство для нас очень важно, так как тут мы как раз получаем возможность судить о нашем существенном отражении как о чем–то целом, сравнивая его как целое с соответствующим ему становлением вещи, т. е. тут–то как раз мы и начинаем рефлектировать это отражение как таковое.
Другими словами, наблюдая этот «наклон», т. е. «наклон» неделимого смысла вещи к изменениям самой вещи, мы впервые получаем возможность расчленять этот неделимый смысл — правда, расчленять еще пока не очень совершенно, ибо у нас еще нет закона и принципа этого наклона в их чистом виде, а есть пока некоторые, бесчисленно многие цельные образы этого наклона, т. е. бесчисленное количество этих наклонов. Полагаем, что тут без труда узнается выдвинутое у нас выше видовое понятие. Каждый такой наклон нашей кривой, нашего неделимого существенного отражения к оси абсцисс, к стихии материального становления, уже достаточно точно рисует нам искомое нами взаимоотношение смысла вещи с вещью и вытекающее отсюда вещественное расчленение этого неделимого смысла. Это уже не есть нерасчлененное понятие, но расчленяемое, дробимое. И тут мы, несомненно, сталкиваемся с видовым понятием, так как во всех этих частных изгибах и наклонах проявляется общая и неделимая кривая, общая и неделимая функция материального становления. До сих пор она была чем–то целым в себе. Теперь же, ориентируясь на движение х, мы разлагаем ее на бесконечное количество частностей. Она теперь стала для нас родовым понятием, распадающимся на бесконечное количество видовых понятий, непрерывно и сплошно истекающих одно из другого и вливающихся одно в другое.
Здесь, между прочим, необходимо обратить самое серьезное внимание на то, как надо понимать отношение рода и вида и что дает для этого математика. В то время как с точки зрения формальной логики виды механически складываются в общий ящик рода и не ставится никакого вопроса о реальном взаимоотношении видов между собою и взаимоотношении видов со своим родом, на самом деле все виды данного рода, взятые вместе, образуют некоторую вполне определенную структуру. Род не есть просто темная и бесформенная яма, в которую сбрасываются видовые кирпичи. Род есть точная и законченная структура, и вид есть тот или иной элемент этой структуры, связанный с нею точнейшим и структурным же образом (о структурности понятия, образуемой определенным взаимоотношением его признаков, мы будем говорить ниже; но отсюда, разумеется, вытекает и структурность понятия как родовой общности). Поэтому иллюстрация родового понятия как той или иной кривой, строго определенной своими координатами, т. е. аналитически данной в виде функции, в которой строго предусмотрен весь решительно порядок операций и весь их характер, эта иллюстрация даже и не есть иллюстрация; это — точный геометрический и аналитический образ всякого родового понятия, его наглядно данная логическая сущность. И точно так же видовое понятие так понимаемого рода есть не что иное, как тот или другой изгиб этой кривой, как то или другое поведение ее в данной точке, как тот или другой наклон ее к оси х, т. е. то или другое ее функционирование, которое теперь специально рефлектируется с точки зрения изменения х, т. е. с точки зрения изменения той первоначальной материи, из которой появилась и она сама (она сама ведь функция от х).
- Эллинистически-римская эстетика I – II вв. н.э. - Алексей Федорович Лосев - Науки: разное
- Потребности человека, их классификация и количество. А также: теория деятельности, отрицательные чувства, стрессы, исследование сексуальной и эстетической любви - Геннадий Генев - Психология
- Из истории советской философии: Лукач-Выготский-Ильенков - Сергей Мареев - Политика
- Том 17. Рассказы, очерки, воспоминания 1924-1936 - Максим Горький - Русская классическая проза
- Читай лица! Специальная методика чтения лиц и эмоций - Светлана Филатова - Психология