Хаос и структура - Алексей Лосев
0/0

Хаос и структура - Алексей Лосев

Уважаемые читатели!
Тут можно читать бесплатно Хаос и структура - Алексей Лосев. Жанр: Математика. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Хаос и структура - Алексей Лосев:
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
Читем онлайн Хаос и структура - Алексей Лосев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 128 129 130 131 132 133 134 135 136 ... 219

Усвоивши эту простую структуру рационального числа, нетрудно перейти и к тому типу числа, который доставил немало затруднений для своей формулировки, хотя чисто количественно и счетно он, конечно, понятен так же, как и вообще всякий другой тип числа. Мы имеем в виду иррациональное число. После вышеприведенных рассуждений ему можно предоставить только вполне определенное место в диалектической системе.

1. К раскрытию понятия иррационального числа можно подойти, согласно намеченному выше плану исследования, двояко: во–первых, со стороны категории рационального числа и, во–вторых, со стороны категорий отрицательного и дробного числа. Разумеется, на самом деле это есть один и тот же—диалектический — подход и различие здесь между двумя точками зрения только внешнее, вытекающее просто из необходимости распределять один и тот же материал по разным признакам. Однако эти два подхода, как сказано, вполне уместно различать.

Что такое иррациональное число в сравнении с рациональным? Оно есть его антитезис. И раз это так, то тем самым рисуется уже совершенно специфическая характеристика иррационального числа, поскольку всякий вообще антитезис по одному только тому, что он антитезис, уже есть вполне специфическая диалектическая структура. Так как антитезис есть инобытие, то иррациональное число есть инобытие рационального, переход его в свою противоположность. Переход же в инобытие может осуществиться только тогда, когда уничтожится основная сущность рационального числа, а именно взаимная соизмеримость внутреннего содержания числа и его внешнего инобытия. В иррациональном числе уничтожена эта соизмеримость, и внутреннее числовое содержание никогда не может здесь целиком выразиться вовне. Все, что мы сказали выше об этом соответствии внутреннего и внешнего, здесь вполне перестает существовать; внешнее бессильно изнемогает в попытках выразить внутреннюю сущность. Внутренняя сущность не может целиком вылиться вовне, и всегда остается тут нечто невыраженное и невыразимое, что бы мы ни предпринимали в целях этого выражения. Ясно, что тем самым ни внутренняя сущность числа, ни его внешнее выражение уже не могут быть теми же самыми, что и в рациональном числе. Что бы ни выражало рациональное число, его внутреннее содержание всегда будет чем–то целым, так как иначе не осуществится сама рациональность, которая является здесь целью. Рациональность есть всегда сведенность начал и концов, законченность, закругленность, обозримость, осязаемая структурность и раздельная полнота. Все это возможно, когда самая сущность выражаемого целостна и, так сказать, способна, в смысловом отношении способна породить из себя целостные и законченные формы. С другой стороны, какими бы средствами ни выражалось рациональное число, оно всегда выражается первыми пятью действиями над единицей, так как иначе здесь исключался бы принцип твердой положенное™ и утвержденное™ рационального числа. Совсем другую картину мы находим в случае с иррациональным числом. Дело в том, что в диалектике каждая смысловая структура получает совершенно разный смысл в зависимости от того, какое место занимает эта структура в общей системе. Нельзя, например, сказать, что внутреннее содержание числа, которое берется в целях внешнего выражения, является в случае рационального числа само по себе целым, а в случае иррационального числа оно, оставаясь само по себе целым, лишается возможности быть выраженным. Так говорить и так понимать диалектику — совершенно неправильно. Целостно внутреннее содержание в рациональном числе не само по себе, но потому, что оно здесь дано в адекватном внешнем выражении (равно как и адекватность выражения здесь дана[173] не сама по себе, а потому, что это есть выражение целого и оформ–ленно–четкого, едино–раздельного). Точно так же—целостным внутреннее числовое содержание никак не может остаться в иррациональном числе, и это только по одному тому, что здесь мыслится невозможность адекватного внешнего выражения. Нельзя тезис и антитезис в диалектической триаде понимать так, что тезис остается сам по себе, а антитезис—сам по себе. В синтезе дано настолько интимное взаимопроникновение того и другого, что оба они получают в его свете совершенно новое содержание и совершенно несводимы на свою старую смысловую сущность. В иррациональном числе внутреннее числовое содержание никак не может остаться целостным и внешняя числовая выраженность никак не может остаться голым, изолированным полаганием факта. Тем самым [выходит], что иррациональное число занимает новое место в системе, т. е. является не рациональным числом, а его антитезисом, тем самым получается необходимость и для тезиса с антитезисом, из которых образовалось рациональное число как синтез, превратиться в новые категории, противоположные старым в той же мере, в какой иррациональное число противоположно рациональному.

Вот тут–то и выясняется необходимость второго подхода к анализу иррационального числа, т. е. необходимость привлечения категорий отрицания и дробности, являющихся как раз противоположностью старых категорий полагания и целости. Ведь та новая триада, которую мы сейчас анализируем, — рациональное, иррациональное, мнимое—вся целиком есть синтез внутреннего числового и внешневыраженного числового содержания, так что и рациональное есть синтез и тождество внутреннего и внешнего, и иррациональное есть синтез и тождество внутреннего и внешнего, и так же — мнимое. Но рациональное есть тезис этого тождества, иррациональное— антитезис, а мнимое, как увидим дальше, окажется синтезом этого тождества внутреннего и внешнего. И эта разница положения в диалектической системе обусловливает собою и различие тех смысловых предпосылок, из которых вытекают эти три вида синтезов. Когда мы переходим к иррациональности, то сталкиваемся уже не с полаганием и целостью, т. е. не с целостным полаганием, или полаганием целости, но с отрицанием дробного свойства (или с дробным отрицанием бытия). Формулируем же это диалектическое обстояние подробнее.

2. Итак, иррациональное число возникает как синтез отрицания и дробности. С первого взгляда этот синтез имеет весьма странный вид, но это потому, что обе эти категории, «отрицание» и «дробность», обычно понимают слишком арифметично, т. е. слишком счетно и количественно, не учитывая всей полноты их диалектической и просто логической значимости. «Отрицание» только в соединении с простым арифметическим числом получает свою обычную вычислительную значимость; само же по себе оно гораздо шире по смыслу, и этот широкий смысл и надо иметь в виду в наших рассуждениях. Отрицание, как мы видели, есть переход от утверждения в сферу, где этого утверждения нет, но где дано оно только категориально, в становящемся виде; оно тут только стремится быть утверждением, но не может им стать. Оно как бы вот–вот станет утверждением, но никогда не может им стать фактически. Мы уже видели, анализируя категорию отрицательного числа, что отрицание здесь нельзя понимать в абсолютном смысле; оно может стать в каждое мгновение утверждением, и ποτδ–му оно тут — относительное отрицание[174]. Лучше всего проявляется чистое отрицание в процессе становления. Когда вещь А дана в процессе становления, то каждое мгновение этого становления есть новое и небывалое в сравнении с предыдущим мгновением, оно есть его инобытие, и это иное и новое нарастает каждое мгновение, каждый момент. Поэтому каждый момент тут есть отрицание другого, предыдущего; и все моменты, вместе взятые, т. е. все становление вещи целиком, в некотором смысле вся вещь целиком, есть сплошное отрицание и каждого отдельного момента, и всей вещи целиком, проходящей через эти моменты. Чистое становление, которое мы потому и называем алогическим становлением, и есть наиболее отчетливая форма диалектического отрицания. Возьмем эту наиболее отчетливую форму отрицания и запомним ее внутреннюю сущность. Нашим тезисом, который войдет в иррациональность, будет именно чистое отрицание, чисто алогическое становление, когда нет никакого и нигде устойчивого состояния и когда все неизменно и сплошно течет, без всяких задержек и без всякой раздельности. Если припомним, то именно такое чистое отрицание, прибавленное к чистому и абсолютному числу, превращало его в отрицательное число.

Теперь посмотрим, что вносит в изучаемый нами иррациональный синтез вторая категория — категория дробности. Дробность тоже нельзя понимать чисто счетно и количественно. Будем все время помнить, что мы занимаемся здесь не математикой, но философией математики и нас интересуют здесь не математические операции сами по себе, но их смысл, их трансцендентальная значимость. Последняя всегда сложнее, необычнее, часто удивляет своим оригинальным характером, в то время как сама–то вещь, значимости которой мы доискиваемся, проста, вполне понятна и даже обыденна. Также и в отношении дробности соблюдем нашу обычную позицию смысловой диалектики и не будем соблазняться банальностью и общепонятностью самого факта, который здесь осмысливается. Дробно то, что имеет какое–нибудь внутреннее содержание, не может быть дробным то, что не имеет ничего внутреннего. Кроме того, это внутреннее должно быть здесь противопоставлено самому себе, т. е. оно само должно перейти в инобытие и получить в связи раздельность. Это мы уже хорошо знаем из анализа категории отрицательного числа. Такая характеристика дробности с безусловной необходимостью входит в иррациональность. Но прежде чем ввести эту дробность непосредственно в категорию иррационального числа, необходимо отчетливо представить себе взаимоотношение «отрицания» и «дробности».

1 ... 128 129 130 131 132 133 134 135 136 ... 219
На этой странице вы можете бесплатно читать книгу Хаос и структура - Алексей Лосев бесплатно.

Оставить комментарий

Рейтинговые книги