Хаос и структура - Алексей Лосев
- Дата:13.12.2024
- Категория: Научные и научно-популярные книги / Математика
- Название: Хаос и структура
- Автор: Алексей Лосев
- Просмотров:0
- Комментариев:0
Шрифт:
Интервал:
Закладка:
3. Второй принцип ставит вопрос о том, что именно полагается в актах–ударах, которые мы здесь полагаем. И ответ гласит: полагается всегда и везде одно и то же. Качественно все эти полагания–акты суть полагания одного и того же. Но если каждая последующая точка есть та же, что и предыдущая, это значит, что все эти точки движутся к одному и тому же, т. е. в одном и том же направлении. Наш бесконечный ряд точек, равноудаленных одна от другой, становится прямой линией, в то время как единство взаиморасположения точек, постулированное первым принципом, само по себе еще ничего не говорит о направлении. И направление тут может быть иным.
4. Но, ограничиваясь этими двумя новыми принципами, мы, переходя к новой точке, знаем только то, в каком направлении мы двигаемся. Однако мы не можем помнить только качество того, что утверждается, при новых и новых утверждениях и ограничиваться установлением только качественных отождествлений. Необходимо, чтобы тождественным был и самый переход от одного к другому — с <…>, т. е. чтобы тождественно было не только качество «что» всех полаганий, но и самая субстанция этих полаганий, чтобы, делая иное полагание, мы делали, в сущности, то же самое полагание. Это и есть третий принцип. Тогда движение равносильно покою, удары–полагания направляются не в разные, но все в одну и ту же точку; и—мы получаем возможность считать», потому что все удары–полагания накопляются, сгущаются как бы «в одном месте», ибо они неизменно возвращаются в одну и ту же точку. Это есть принцип порядковое т. е. принцип сгущения, скучивания, накопления актов полагания в одной точке. Остается, значит, только, чтобы этот процесс накопления был понят как абсолютная единица, т. е. чтобы это упорядочиваемое инобытие накопляющихся точек было понято как абсолютная единица, и—результат пересчета всех предыдущих актов полагания превращается в одно и единственное, абсолютно единичное число натурального ряда. Отныне всякое движение в сфере этого становления будет счетом, и всякий покой в сфере этого становления будет счетом. Привлекая употребленный выше подсобный образ геометрической линии равноотстоящих] и тождественных точек, мы должны теперь коренным образом его реформировать. Это уже не будет линия, но всего только одна точка, — однако такая, в которой собраны все акты полагания, растянутые раньше, и вернее, — одна пульсирующая точка, один пульсирующий акт полагания. С каждым новым актом полагания растет и накопление этих актов в данной точке (вместо прежнего их внеположного растягивания в одну прямую линию), т. е. растет число, растет натуральный ряд чисел.
5. Отсюда, натуральный ряд чисел характеризуется в последнем счете тремя принципами — принципами единства расположения, единства направления и единства порядка сгущения (накопления) актов полагания.
Натуральный ряд чисел есть становящийся синтез единицы и ее инобытия, данный как одинаковость взаимопринадлежности распределения, направления и порядково–сти (накопления, сгущения) актов полагания. Или короче: натуральный ряд есть становление тождества единицы с ее инобытием.
§ 90. Переход к типам числа.1. С возникновением натурального ряда сущность числа получает уже более или менее конкретную характеристику.
К натуральному ряду при известной точке зрения можно свести решительно всю арифметику, т. е. решительно всю математику. И наоборот, имея диалектическую конструкцию[128] натурального ряда, можно путем последовательного ее развития получить всю диалектическую систему математики. Но как двигаться от натурального ряда дальше?
В распоряжении диалектики имеется единственный метод—метод перехода в инобытие, в отрицание и в дальшейшем — метод отрицания этого отрицания, т. е. метод полагания в инобытии, в антитезисе того, что было в бытии, в тезисе, и тем самым синтезирования инобытия с бытием. Мы достигли натурального ряда чисел. Теперь, значит, натуральный ряд будет для нас бытием и тезисом, и — требуется узнать, какие же будут инобытие и антитезис. Теперь уже не просто акт полагания является нашим бытием и не просто единица и даже не просто любое число натурального ряда. Теперь имеем уже все числа натурального ряда, какие только возможны. И переход от такого бытия к инобытию уже не может быть переходом к тем или другим числам, раз все числа уже содержатся в том, от чего мы переходим к инобытию. Инобытие должно дать тут совершенно новые категории, уже нисколько не связанные с количест–венностью и с положением в натуральном ряду. Тут мы переходим к разным типам числа и к их диалеятаческой классификации.
2. Заметим, что та числовая сфера, о которой мы сейчас будем говорить, есть вся сфера, инобытийная в отношении натурального ряда. Вся область натурального ряда теперь превратится для нас в одну нерасчлененную идею, о переходе которой в инобытие, т. е. о ее осуществлении, мы и будем говорить. Как перво–принцип числа со всеми своими внутренними различениями превратился для нас в нерасчлененную идею, когда мы стали говорить о переходе его в другие диалектические ступени (потому что тут важна именно эта дальнейшая судьба перво–принципа, а не его статически указуемая[129] внутренняя структура), и как единица утеряла для нас интерес в своей внутренней структуре, как только мы стали говорить о ее взаимоотношениях с соответствующим инобытием, так и сейчас для нас перестает быть важным внутренняя структура и значение натурального ряда, поскольку начинается речь не о нем самом, но о его дальнейших диалектических судьбах. И мы будем правы, если весь натуральный ряд будем считать некой числовой идеей вообще, которая переходит в свое инобытие, осуществляется и воплощается в своем инобытии. По этой же причине нет нужды в предстоящей главе о типах числа все время говорить об инобытии натурального ряда. Будем помнить в течение всей предстоящей главы, что речь идет именно о сфере, инобытийной в отношении натурального ряда. Называть же мы ее будем просто числовой сферой и будем говорить об осуществлении идеи числа вообще в этой числовой сфере.
Делать это мы будем просто ради избежания излишнего нагромождения терминов, которые все равно будут непонятны, если не будет усвоено общее место типов числа во всей области сущности числа и числа–в–себе. Поэтому вдумаемся лучше в то, что такое инобытие натурального ряда, а как его именовать—это дело второстепенное. Это инобытие, повторяем, не может быть одним из чисел натурального ряда, потому что все эти числа уже предусмотрены в идее натурального ряда. Подлинное инобытие возникнет тут именно тогда, когда возникнут совершенно новые типы числа, возникнут на основе новых актов полагания в этой инобытийной по отношению ко всему натуральному ряду сфере, на основе нового инобытия этих актов, синтеза инобытия этих актов с их бытием и т. д. и т. д.
II. ТИПЫ ЧИСЕЛ (ИНОБЫТИЕ СУЩНОСТИ ЧИСЛА) 1. ВНЕШНЕЕ ИНОБЫТИЕ § 91. а) Положительное число.Имея полное и законченное понятие числа в натуральном ряде и зная его диалектическое происхождение, мы переходим к тому трудному вопросу, который можно назвать проблемой классификации чисел. Труден этот вопрос, конечно, не технически, так как уже на первых страницах алгебры <…> математики с поразительной ловкостью и беззаботностью выставляют очень легкие и понятные определения того, что такое целое, дробное, рациональное, иррациональное[130] числа, и в дальнейшем даже ни разу не возвращаются к определению этих чисел, считая их абсолютно ясными и понятными. Конечно, технически нет ничего проще понять, что такое, например, отрицательное или мнимое число. Для философа, однако, тут залегают огромные логические трудности, по общему обыкновению для философа: что понятнее всего профану, то непонятно философу, и что легко и понятно для философа, то составляет часто непреодолимые трудности для профана. Диалектическая классификация типов чисел, предлагаемая здесь, обладает чрезвычайно большой простотой, если только дать себе труд вдуматься в нее. Для мыслящего требуется здесь только самое элементарное владение диалектическим методом, попросту даже сказать, только понимание основной диалектической триады. Кому понятно вообще, как тезис переходит в антитезис и завершается, возвращаясь в себя, синтезом, тот без труда поймет прилагаемую ниже классификацию, и она будет для него простым и очевидным продуктом элементарного логического анализа. Впрочем, для понимания предлагаемой диалектики типов чисел надо преодолеть трудность гораздо большую, чем владение диалектическим методом. Надо отказаться от высокомерия математических учебников, претендующих на всезнание и решительно все на свете «понимающих» и «знающих». Забудем ту легкость, с которой мы оперировали в школе, когда учитель давал нам задачи с отрицательными и иррациональными величинами. Технически вычислительная легкость не имеет ничего общего с логической четкостью понятия. А мы хотим здесь добиться именно логической, и в частности диалектической, четкости.
- Эллинистически-римская эстетика I – II вв. н.э. - Алексей Федорович Лосев - Науки: разное
- Потребности человека, их классификация и количество. А также: теория деятельности, отрицательные чувства, стрессы, исследование сексуальной и эстетической любви - Геннадий Генев - Психология
- Из истории советской философии: Лукач-Выготский-Ильенков - Сергей Мареев - Политика
- Том 17. Рассказы, очерки, воспоминания 1924-1936 - Максим Горький - Русская классическая проза
- Читай лица! Специальная методика чтения лиц и эмоций - Светлана Филатова - Психология