Этюды о Вселенной - Тулио Редже
- Дата:18.10.2024
- Категория: Научные и научно-популярные книги / Науки о космосе
- Название: Этюды о Вселенной
- Автор: Тулио Редже
- Просмотров:0
- Комментариев:0
Шрифт:
Интервал:
Закладка:
Следовательно, если в каком-либо состоянии имеется бозон, то вероятность найти в этом же состоянии еще бозоны заранее возрастает.
Далее, все атомы гелия представляют собой одинаковые бозоны, следовательно, они стремятся оказаться в одном и том же состоянии. Если бы отсутствовали силы взаимодействия между атомами и атомы были совершенно прозрачны друг для друга, то наблюдалась бы так называемая конденсация Бозе-Эйнштейна: при абсолютном нуле все атомы обрели бы минимальную скорость, допустимую соотношением неопределенности Гейзенберга. Поскольку местонахождение атома ограничено только тем, что он находится внутри сосуда с жидкостью, то неопределенность в его положении может достигать размеров этого сосуда, в то время как неопределенность в скорости при этом окажется очень небольшой. Следовательно, все атомы попали бы в одно и то же состояние абсолютного покоя, их положение в сосуде стало бы совершенно неопределенно, атомы с равной вероятностью могли бы находиться в любом месте.
Взаимодействие между атомами гелия
Однако если мы снова введем взаимодействие между атомами, то они уже не смогут неопределенно долго перемещаться в сосуде, не наталкиваясь на своем пути на другие атомы. в жидком гелии атом может беспрепятственно проходить только микроскопические расстояния порядка нескольких ангстрем (1 ангстрем = 1 Å = 10–8 см). Вокруг любого атома все остальные создают заслон, похожий на клетку, из которой он выйти не может. Все же мы здесь имеем дело не просто с обычными шариками, но с бозонами. Приблизившись к стенке клетки, атом может поменяться местами с одним из окружающих атомов, который займет место внутри клетки. Атом может таким образом выйти за пределы клетки и, повторяя этот процесс, передвигаться по всему объему сосуда, хоть и не с такой легкостью, как прежде. Легкость, с которой происходит такое передвижение атомов, и отражает степень конденсации Бозе-Эйнштейна.
Другими словами, из-за взаимодействия между атомами вероятность оказаться им всем вместе в покое в самом нижнем состоянии исчезает, хотя и не совсем. Оставшаяся вероятность как раз и объясняет явление сверхтекучести; при абсолютном нуле состояние системы сравнимо с состоянием жидкости, в которой атомы могут свободно перемещаться в сосуде, но передвигаются еле-еле, только меняясь местами с соседними атомами. Известно, что при таких условиях среднее расстояние между атомами равно трем ангстремам, и все конфигурации, соответствующие таким усредненным условиям, равновероятны.
Волны и фононы
Сообщая системе энергию, мы возбуждаем в жидкости колебания в виде звуковых волн. Как в случае обычного звука в воздухе, в жидкости наблюдаются циклы чередующихся областей сжатия и разрежения. Согласно де Бройлю, понятия волны и частицы представляют дуальные, или дополнительные по отношению друг к другу, способы описания одного и того же явления. Частица с импульсом р имеет длину волны λ = h / p, и, наоборот, волне с длиной λ мы приписываем свойства частицы с импульсом р = h/λ. Итак, звуковая волна соответствует частице (или, лучше, «квазичастице»), называемой «фононом» и движущейся в жидкости как раз со скоростью звука и импульсом р = h/λ. Такое движение можно сравнить с движением фотона света.
Возбуждая колебания в полости, наполненной жидким гелием, мы тем самым создаем фононы, которые сгущаются все больше и больше; при этом температура гелия увеличивается до тех пор, пока фононы не образуют особый газ, сосуществующий с возбужденной жидкостью или, если угодно, «являющийся» самой этой жидкостью. Здесь важно, что такой фононный газ ведет себя как газ (или жидкость), состоящий из частиц. в частности, в нем наблюдаются «звуковые» волны второго поколения, называемые «вторым звуком» и предсказанные Ландау. Как обычный звук представляет собой волны сжатия и разрежения атомов газа или жидкости, так второй звук – это волны сгущения и разрежения фононов. Сгущение же фононов приводит к увеличению температуры, из-за чего второй звук в действительности отвечает чередующимся волнам тепла и холода, и для того чтобы его почувствовать, необходим термометр!
По определению фононы переносят энергию со скоростью звука (примерно 240 м/с в жидком гелии), т.е. практически мгновенно. Следовательно, сверхтекучий гелий является идеальным проводником тепла, и его температура уменьшается или увеличивается строго равномерно по всему объему. Здесь не образуются области, в которых локальный перегрев приводит к появлению пузырьков, наполненных паром, что необходимо для того, чтобы началось кипение. По этой причине при температуре ниже λ-точки кипение гелия вдруг прекращается.
Шарик, движущийся в такой жидкости, может терять энергию, только возбуждая фононы (так по крайней мере считал вначале Ландау, не зная еще о существовании вихрей). Испускание фононов подобно появлению звукового удара при движении реактивных самолетов; он появляется, только если объект (будь то самолет или шарик) преодолеет звуковой барьер и его скорость превысит скорость звука. Итак, медленный шарик не может терять энергию и замедляться дальше; вот почему в жидком гелии отсутствует вязкость и наблюдается сверхтекучее поведение. Аналогичное рассуждение справедливо и для движения по исключительно тонким капиллярам.
Вихри и вязкость
В сверхтекучем гелии, однако, критерий Ландау нарушается; как только жидкость начинает двигаться со скоростью, равной не метрам, а всего лишь нескольким сантиметрам в секунду, снова начинают происходить диссипативные процессы, вовлекающие в игру вязкость. Эти процессы обязаны своим появлением новому типу возбуждения, вихрям, которые могут перемещаться с низкими скоростями и которые отрываются от движущихся шариков гораздо раньше, чем те испустят фононы. в сверхтекучей жидкости вихри очень тонкие (шириной 1 Е) и практически невидимы; избавиться от них чрезвычайно трудно. Если заставить вращаться ведерко, наполненное сверхтекучей жидкостью, то от его стенки немедленно отделится множество вихрей, направленных вдоль оси вращения и вместе напоминающих макро вихрь в обычной жидкости.
Если бы вихри не появлялись, то было бы невозможно заставить крутиться сверхтекучую жидкость вместе с сосудом; при вращении сосуда жидкость скользила бы без трения, отказываясь следовать за стенками сосуда. Таким образом, появление вихрей приводит к тому, что поведение сверхтекучей жидкости становится похожим на поведение нормальной. При дальнейшем нагревании сверхтекучей жидкости центры возбуждения в конце концов заполняют весь сосуд и жидкость перестает быть сверхтекучей; это происходит как раз в λ-точке. Если пропустить сверхтекучую жидкость через трубку, наполненную очень тонким спрессованным порошком, то, поскольку через такой фильтр вихри и фононы не пройдут, просочившаяся жидкость окажется более холодной, чем оставшаяся. Нагревая жидкость в какой-нибудь точке, мы вызовем появление фононов.
Эффект фонтанирования
При описании всех упомянутых явлений рассматривают жидкий гелий как смесь двух жидкостей: сверхтекучей, проходящей через тонкие отверстия, и нормальной, которая через такие отверстия пройти не может. Под нормальной жидкостью понимается та часть, в которой встречаются фононы и прочие возбуждения. Говорят, что при нагревании сверхтекучая жидкость переходит в жидкость нормальную и что этот процесс завершается в λ-точке.
Такой подход приводит к любопытным объяснениям различных странных эффектов, проявляющихся в жидком гелии, например фонтанировании. Погрузим вертикально в жидкость трубку, закрытую снизу упоминавшимся уже фильтром из тонкого спрессованного порошка и открытую сверху. Гелий частично войдет в трубку. Будем медленно нагревать внутренность трубки. При этом сверхтекучая жидкость превращается в нормальную, давление которой соответственно повышается. Однако, поскольку нормальная, вязкая, жидкость выйти через фильтр не может, она поднимет общий уровень жидкости в трубке, и тогда, согласно закону сообщающихся сосудов, в трубку через пробку снова потечет сверхтекучая жидкость. Таким образом, наблюдается непрерывный приток жидкости в трубку, и в конце концов она выбрасывается вверх в виде фонтана, отчего и произошло само название эффекта.
До сих пор мы считали, что имеем дело с гелием, состоящим из бозонов, т.е. с He4. Существует, однако, изотоп гелия, He3, ядро которого содержит только один нейтрон и поэтому является фермионом. Следовательно, и атом He3 тоже представляет собой фермион, что вносит глубокие изменения в свойства жидкости при низкой температуре. Жидкий He3 не затвердевает по той же причине, что и He4. При температурах в тысячные доли градуса Кельвина два атома He3 объединяются, образуя так называемую «пару Купера», которая в некотором смысле играет ту же роль, что и атом He4; действительно, мы снова имеем бозон, и снова наблюдаются сложные явления сверхтекучести, на которых мы не можем более задерживаться. Физики считают, что в ядерном веществе нуклоны аналогичным образом собираются в куперовские пары, что также приводит к явлениям сверхтекучести.
- Сборник 'В чужом теле. Глава 1' - Ричард Карл Лаймон - Периодические издания / Русская классическая проза
- Теория относительности для миллионов - Мартин Гарднер - Прочая научная литература
- Принцип относительности - Вадим Проскурин - Киберпанк
- Скачок энтропии массовых совокуплений - Норман Спинрад - Научная Фантастика
- Дом, который построил Дед - Борис Васильев - Классическая проза