Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко
0/0

Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко

Уважаемые читатели!
Тут можно читать бесплатно Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко. Жанр: Биология. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко:
Величайшие биологи прошлого пытались разобраться в том, для чего живым существам нужно половое размножение, как оно возникло, какую пользу принесло и почему не исчезло. В книге «Секс с учеными» рассказывается, как ученые попытались связать секс с мутационным процессом и в результате создали целую область науки – популяционную генетику. Речь заходит о разделении на два пола, в котором ничего нельзя понять без теории игр, и половых хромосомах, вокруг которых закручиваются увлекательные сюжеты из молекулярной биологии. Затем повествование переходит к мейозу, о котором до сих было крайне затруднительно прочитать что-то понятное неспециалистам. В связи с ним затрагивается и важнейший вопрос современной науки – происхождение жизни на Земле. Наконец, нашлось в книге место и для обсуждения роли секса в жизни общества, о которой все вроде бы давным-давно написано, но лишняя пара глав никому не повредит.Будет ли обладать эволюционным преимуществом мутация к бесполому размножению у человека? Девушка, получившая в дар от природы способность беременеть просто так, без всякого внешнего повода, скорее всего, станет большой проблемой для медиков и/или социальных служб. Хотя, конечно, романтические фантазии о новом продвинутом разумном виде вроде «Славных Подруг» из романа братьев Стругацких «Улитка на склоне» тоже имеют право на существование.Для когоДля всех, кто хочет понять, для чего нужно живым существам половое размножение, как оно возникло, какую пользу принесло и почему не исчезло в процессе эволюции. Эта книга для тех, кто интересуется биологией и генетикой и готов вместе с учеными искать ответы на неразгаданные загадки эволюции.Каждый сперматозоид Льва Николаевича нес в себе ровно половину его диплоидного генома. За всю его жизнь тринадцать сперматозоидов слились с тринадцатью яйцеклетками его супруги, так что следующему поколению перешло тринадцать половинок генома писателя.

Аудиокнига "Секс с учеными: Половое размножение и другие загадки биологии"



🔬 В аудиокниге "Секс с учеными: Половое размножение и другие загадки биологии" от Алексея Алексенко мы погружаемся в захватывающий мир биологии и изучаем различные аспекты полового размножения и другие загадки этой науки. Автор подробно рассматривает процессы, происходящие в организмах животных и растений, и делится удивительными фактами и открытиями.



🌿 Слушая эту аудиокнигу, вы узнаете о том, как размножаются различные виды живых существ, какие механизмы лежат в их основе, и какие законы природы регулируют этот процесс. Секс с учеными - это не просто увлекательное путешествие в мир биологии, но и возможность расширить свои знания и понимание окружающего мира.



🎧 Сайт knigi-online.info предоставляет возможность слушать аудиокниги онлайн бесплатно и без регистрации на русском языке. Здесь собраны бестселлеры и лучшие произведения различных жанров, включая аудиокниги по биологии. На сайте вы сможете насладиться увлекательными произведениями и расширить свой кругозор.



Об авторе



Алексей Алексенко - известный биолог, автор множества научно-популярных книг о живой природе. Его работы пользуются популярностью у читателей всех возрастов благодаря ясному изложению сложных научных концепций и увлекательному стилю.

Читем онлайн Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 45 46 47 48 49 50 51 52 53 ... 85
клеток и ядер происходит при зачатии, а рекомбинация – это уже, знаете ли, половая зрелость, и ее результатами будет пользоваться только следующее поколение. Поэтому всю жизнь мы живем диплоидами – существами с двойным набором хромосом, один от папы, один от мамы, и они не перемешиваются. У организмов попроще бывает и по-другому: рекомбинация происходит сразу после слияния ядер, и все тотчас переходит в финальную стадию (см. следующий пункт).

3. Чтобы повторить этот цикл в следующем поколении, надо снова уменьшить число хромосом вдвое, а иначе оно в каждом поколении будет удваиваться. Здесь важно, чтобы прорекомбинировавшие хромосомы точно разошлись между клетками-потомками и ни одна из них не потерялась. Это называется редукционное деление.

Строго говоря, за два последних события как раз и отвечает мейоз, а первое, или первые два, – независимая история, которая часто происходит в другой(ие) момент(ы) времени. У некоторых растений, например у мха, эти события разбивают жизнь на очень непохожие друг на друга этапы. После слияния клеток и ядер образуется спорофит, диплоидное существо, которое некоторое время живет в свое удовольствие, фактически паразитируя на родителе, а потом образует споры. Образование спор – это и есть мейоз. Из спор вырастают другие существа – гаметофиты. Они гаплоидны, их судьба – покрывать зеленым ковром кочки и стволы деревьев, якобы с одной стороны, чтобы туристу было легче отличить север от юга, а на самом деле где угодно, чтобы бедняга сильнее заблудился. Но смысл жизни гаплоидного гаметофита не в этом, а в произведении гамет – тех самых клеток, которым предстоит слиться друг с другом, чтобы завершить цикл.

Скольких любознательных детей заворожили все эти гаметофиты и спорофиты! И скольких они навсегда оттолкнули от биологии! Однажды мне попался в руки учебник ботаники для шестого класса, авторы В. П. Викторов и А. И. Никишов. Там бедных шестиклассников заставляли заучивать какие-то слова про спорофит и гаметофит – за два года до того, как они узнают слово «хромосома», не говоря уже о гаплоидах и диплоидах. Так, наверное, и образовался этот удивительный русскоязычный феномен – этакий таинственный туман из плохо определенных терминов и расплывчатых мантр, сдобренный провидческими цитатами из великих отечественных биологов прошлого, который в прежние времена многие принимали за биологическую науку. Впрочем, это было лирическое отступление…

У мха самая приметная фаза жизни – гаметофит, а вот у высших растений вроде яблони – диплоидный спорофит, хотя гаметофит тоже существует – он ненадолго вырастает из пыльцевого зерна при оплодотворении. У нас с вами никакого гаметофита нет: спермий, став гаплоидным, уже не делится, а у яйцеклетки вообще не бывает чисто гаплоидного состояния – она решается на последний шаг к гаплоидности, только когда спермий уже у нее внутри. Тем не менее при разговоре с ботаником следует проявлять политкорректность: не надо ему говорить, будто при мейозе образуются гаметы. Нет, при мейозе в общем случае образуются споры, а вот уже из спор получается нечто, в конце концов дающее гаметы – клетки, которым предстоит слиться друг с другом для нового полового цикла. Это не празднословие, а важная штука: у незатейливых организмов вроде дрожжей или тех же плесневых грибов мейоз происходит именно перед тем, как образуются споры. Грибы делают это в сложные моменты жизни, не думая о создании семьи. Если хотите заставить гриб[15] заняться мейозом, поставьте его в безвыходную ситуацию, и он сделает это. Споры переждут трудные времена, прорастут, вырастут в «грибницу» или колонию плесени, и лишь потом гриб задумается, не пора ли искать партнера. Есть основания считать, что именно так все было у нашего предка LECA: мейоз – споры – гаплоидный организм – в какой-то момент слияние клеток и ядер, и тут же новый мейоз.

Гаметофит и спорофит у растений – это просто две фазы жизненного цикла, гаплоидная и диплоидная. Мы-то с вами диплоиды и видим в этом состоянии массу преимуществ: например, мы можем позволить себе завести в одной из парных хромосом рецессивную мутацию, и она нас не убьет, потому что всю работу возьмет на себя здоровый ген из другой хромосомы. Казалось бы, нашим предкам было вполне естественно ухватиться за такой полезный гаджет. Но у диплоидности есть и темная сторона. Рецессивные мутации плохо видны отбору – вернее, совсем не видны, пока они не соединятся в одном геноме. В результате мутации не вычищаются из генофонда. В некотором смысле такие гены превращаются в паразитов, существующих за счет остального генома. То, что паразиты вредны, очевидно и без доказательств, и наличие гаплоидной фазы жизни как раз может решить эту проблему. О том, что иметь много копий хромосомы может быть полезно в краткосрочной перспективе, но губительно в более отдаленной, свидетельствует и компьютерное моделирование (в статье Александра Маркова 2016 года приводится на этот счет поучительная картинка).

Видимо, плюсы и минусы гаплоидности образуют некое равновесие, разное для разных организмов. Похоже, что у сложных созданий вроде нас с вами – с нашими маленькими размерами популяций – плюсы диплоидности перевешивают. Мхи и плауны застряли на перепутье в нерешительности, а грибы сделали выбор в пользу генетической чистоты, пожертвовав сиюминутной безопасностью. Лучше уж наделать побольше спор (мы помним, что продукт мейоза – это именно гаплоидные споры), и пусть отбор займется чисткой, чтобы проросли только избранные.

Но вернемся к трем (или четырем) главным этапам полового размножения. Из нашего списка пункты 2 и 3 входят в понятие мейоза, а первый пункт, слияние клеток, – это отдельная песня. При этом прокариотические организмы – бактерии и археи – вроде бы умеют только пункт 2, то есть рекомбинацию. Занимаются они ею совсем не так, как мы, и по другим поводам, однако сходство очевидно. Об этом речь пойдет дальше. Сейчас надо сказать пару слов о слиянии клеток.

Чтобы оценить (в эволюционном смысле) прелести полового размножения, нашему предку так или иначе пришлось для начала освоить слияние клеток, и вот вопрос: с чего бы ему этим заниматься, если вся последующая механика – узнавание гомологичных хромосом, редукционное деление и прочее – еще не разработана? А ее никак нельзя разработать, не соединив для начала две клетки. Есть ли в соединении клеток какой-то сиюминутный смысл, чтобы наш предок мог заняться этим, не заглядывая далеко вперед?

Как было сказано выше, смысл, конечно, есть: слившись, клетки могут объединить свои биохимические навыки и обеспечить себя веществами, которые каждая из них в отдельности синтезировать не могла. Некоторые делают это даже вне всякой связи с половым размножением. Возьмите два плесневых грибка аспергилла – чтобы один, например, нуждался для роста в аминокислоте аргинине, а другой – в триптофане. Для наглядности пусть у первого будут желтые споры-конидии, а у второго белые (и то и другое – мутации: в норме споры зеленые). Перемешайте споры и посейте на среду, в которой нету ни аргинина, ни триптофана. Вместо того чтобы смиренно умереть с голоду в отсутствие необходимых аминокислот, грибки начнут образовывать странные колонии, покрытые пестрым ковром из белых и желтых спор. Это дикарионы – грибы, в клетках (гифах) которых перемешаны два типа ядер. Ядра поддерживают друг друга: в одних есть ген синтеза аргинина, в других – триптофана, а вместе они обладают всем необходимым. Это, конечно, паллиативная мера: и желтые, и белые споры по-прежнему содержат только по одному ядру, и на голодной среде без аминокислот колонии из них не вырастут. Но хотя бы у них будет шанс дождаться лучших времен.

Итак, слияние клеток может быть полезным. Большинству бактериальных клеток мешает сливаться клеточная стенка: это довольно жесткая оболочка или даже скорлупка снаружи от клеточной мембраны, изолирующая бактерию от внешнего мира. Но клеточная стенка есть не у всех. Возможно, лишившись клеточной стенки, две бактерии могли бы слиться буквально сами собой – по неосторожности. Тем не менее считалось, что ни у каких бактерий и архей слияние клеток не является и никогда не являлось частью их повседневной жизни. Впрочем, недавние исследования показали, что это, возможно, совсем не так.

У самых разных эукариот есть ген HAP2, который кодирует белок, необходимый для вхождения спермия в яйцеклетку или слияния гамет. Сначала его нашли у растений, а потом похожие гены/белки стали находить у других организмов. Кстати, с названиями генов часто бывает так, что сначала у разных существ их называют по-разному, а потом, когда выясняется, зачем этот ген нужен, все его родственники постепенно приобретают одинаковое имя (заимствованное обычно у того организма, у которого этот ген лучше изучен или впервые обнаружен). Чтобы не путать читателя, мы не будем каждый раз объяснять, что, например, название ZIP взято у дрожжей, HIM – у червей,

1 ... 45 46 47 48 49 50 51 52 53 ... 85
На этой странице вы можете бесплатно читать книгу Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко бесплатно.
Похожие на Секс с учеными: Половое размножение и другие загадки биологии - Алексей Алексенко книги

Оставить комментарий

Рейтинговые книги