Жизнь на грани - Джонджо МакФадден
- Дата:20.06.2024
- Категория: Научные и научно-популярные книги / Биология
- Название: Жизнь на грани
- Автор: Джонджо МакФадден
- Просмотров:3
- Комментариев:0
Шрифт:
Интервал:
Закладка:
Реннин, или сычужный фермент, представляет собой смесь нескольких различных ферментов. В сыроварении наиболее активно используется фермент химозин, представитель большого семейства ферментов протеаз, ускоряющих расщепление белков. Его роль в производстве сыра заключается в том, что он способствует свертыванию молока, которое затем разделяют на сычужную закваску и сыворотку. Однако в организме молодого теленка данный фермент створаживает молоко, поступающее в желудок, так что оно дольше остается в пищеварительном тракте, увеличивая время всасывания. Коллагеназа также является протеазой, но способ ее выделения оставался неизвестным на протяжении еще 50 лет, пока в 1950-х годах Джером Гросс, исследователь из Гарвардской медицинской школы Бостона, не задался вопросом, как же головастик растворяет свой хвост и превращается в лягушку.
Гросс исследовал функции коллагеновых волокон как пример самоорганизации молекул, в которой, как он считал, «заключается главный секрет жизни»[30]. В качестве образца для исследований он взял огромный хвост головастика лягушки-быка, достигающий в длину нескольких дюймов. Гросс правильно предположил, что процесс реабсорбции должен состоять из многочисленных этапов сборки и расщепления коллагеновых волокон животного. Чтобы определить активность коллагеназы, он разработал простой эксперимент, в ходе которого чашка Петри наполнялась слоем похожего на молоко коллагенового геля, состоящего из прочных, крепких коллагеновых волокон. Помещая фрагменты ткани хвоста головастика на поверхность геля, он отмечал, что в зоне вокруг фрагментов эти прочные волокна расщепляются и превращаются в растворимый желатин. В результате Гросс выделил разрушающее коллаген вещество — фермент коллагеназу.
Коллагеназа присутствует в тканях лягушки и других животных, включая динозавра, утонувшего в Хелл-Крик. Еще 68 миллионов лет назад фермент выполнял ту же функцию, что и сегодня, а именно разрушал коллагеновые волокна. Когда животное погибло и провалилось в болото, фермент утратил свою активность. Тем не менее коллагеновые волокна сохранили свою структуру, пока Мэри Швейцер не добавила немного свежей коллагеназы к костным фрагментам.
Коллагеназа — только один из миллионов ферментов, от которых зависят практически все виды жизнедеятельности животных, микроорганизмов и бактерий. Одни ферменты создают коллагеновые волокна внеклеточного матрикса; другие отвечают за сборку биомолекул — белков, ДНК, жиров и углеводов; наконец, целая группа различных ферментов расщепляет и перерабатывает эти молекулы. Ферменты отвечают за пищеварение, дыхание, фотосинтез и метаболизм. Они создают всех нас. Они поддерживают нашу жизнь. Они — механизмы жизни.
Но являются ли ферменты только биологическими катализаторами, участвуя в химических реакциях наподобие получения серной кислоты и других промышленных веществ? Несколько десятилетий назад большинство биологов согласились бы с мнением Бухнера о том, что химия жизни не отличается от тех процессов, которые можно наблюдать на химических заводах или даже в наборе юного химика. Но в последние 20 лет взгляд на этот вопрос радикально изменился. В ходе нескольких ключевых исследований было сформировано абсолютно новое мнение о работе ферментов. Оказалось, что этим катализаторам жизни покоряются такие глубины, какие не подвластны классической химии, — ферменты творят чудеса и на квантовом уровне.
Чтобы понять, почему для разгадки тайны жизни нам необходима квантовая механика, мы должны сначала узнать, как работают самые простые промышленные катализаторы.
Изменение ландшафта
Катализаторы действуют посредством множества механизмов. Разобраться в этих механизмах помогает теория переходного состояния[31], доступно описывающая то, как катализаторы ускоряют реакции. Чтобы понять теорию переходного состояния, нужно посмотреть на проблему с другой стороны и подумать, зачем для ускорения реакций нужны катализаторы. Ответ прост: почти все химические вещества, окружающие нас, достаточно стабильны и инертны. Они не распадаются мгновенно, не вступают с другими веществами в быструю реакцию. К слову, если бы вещества именно так и поступали, их бы не было вокруг нас.
Причина стабильности привычных соединений заключается в следующем: их связи редко разрушаются вследствие неизбежного турбулентного перемещения молекул, которое всегда происходит в любом веществе. Наглядно это можно представить так: молекулы веществ, участвующие в реакции, должны преодолеть препятствия рельефа, а именно забраться на вершину холма, который находится между ними и превращением в конечный продукт (рис. 3.1).
Рис. 3.1. Молекулы веществ, вступающих в реакцию (на рисунке — точки серого цвета), способны превратиться в молекулы продуктов реакции (на рисунке — точки черного цвета), но сперва они должны преодолеть энергетический «холм». При нормальной температуре молекулы не обладают достаточным количеством энергии для поднятия по склону этого «холма», однако чем выше температура, тем легче молекулы взбираются на его вершину
Энергию, необходимую для того, чтобы взобраться на склон этого «холма», молекулы получают в основном при нагревании. С повышением температуры атомы и молекулы начинают двигаться и совершать колебания быстрее. Подобная толкотня может разрушать химические связи между атомами в молекуле, а также способствовать созданию новых связей. Однако атомы более стабильных молекул (привычных для нашей среды) соединены достаточно крепкими связями, которые устойчивы к турбулентности окружающих молекул. Итак, химические соединения, окружающие нас, устойчивы благодаря тому, что их молекулы в основном стабильны[32], несмотря на их же активную толкотню.
И все же даже стабильные молекулы разрушаются, если для разрыва связи между атомами достаточно энергии. Один из источников энергии, разрушающей молекулы, — дополнительная теплота, ускоряющая их движение. При нагревании химического соединения его внутримолекулярные связи в конце концов разрушаются. Вот почему нам так часто приходится готовить еду на плите: при нагревании ускоряются химические реакции, благодаря которым сырые ингредиенты (вещества, участвующие в реакции) превращаются в съедобные продукты.
Чтобы понять, как теплота ускоряет химические реакции, обратимся к удобному наглядному примеру. Представьте, что молекулы исходного соединения — это песчинки в левом сосуде песочных часов, лежащих на боку (рис. 3.2, а).
Рис. 3.2. Смена энергетического ландшафта: а) молекулы могут перейти из сосуда с исходным веществом в сосуд с продуктом реакции, однако им необходима дополнительная энергия для достижения переходного состояния (чтобы попасть в горловину часов); б) если приподнять левый сосуд часов, молекулы исходного вещества (субстрата) приходят в состояние с большей энергией по сравнению с продуктом, что позволяет им легко проникать в правый сосуд; в) ферменты стабилизируют переходное состояние, снижая энергетический барьер (расширяя горловину наших часов), упрощая превращение молекул субстрата в молекулы продукта реакции. На рисунке R (reactants) — вещества, участвующие в реакции; P (products) — продукты реакции
Если оставить часы в состоянии покоя, никак на них не воздействуя, песчинки так и останутся лежать в левом сосуде до скончания веков, поскольку они не обладают достаточной энергией, чтобы преодолеть узкую горловину и попасть в правый сосуд, символизирующий конечный продукт реакции. Молекулы исходного вещества, участвующего в химической реакции, могут получить дополнительную энергию при нагревании. Они начинают двигаться и совершать колебания с более высокой скоростью, что позволяет некоторым из них превращаться в молекулы продукта реакции. Представим, будто кто-то хорошенько встряхнул наши песочные часы и некоторые молекулы-песчинки в результате попали из левого сосуда в правый, превратившись в молекулы продукта реакции (см. рис. 3.2, б).
Еще один способ превратить субстраты в продукты заключается в том, чтобы снизить энергетический барьер, который должны преодолеть молекулы исходного вещества. Именно этим и занимаются катализаторы. Они расширяют горловину песочных часов и позволяют песку из левого сосуда беспрепятственно и с минимальными усилиями проникать в правый сосуд (см. рис. 3.2, в). Таким образом, ход реакции значительно ускоряется благодаря способности катализатора менять форму энергетического ландшафта и таким образом позволять субстратам[33] гораздо быстрее превращаться в продукты.
- Революция в физике - Луи де Бройль - Физика
- Аквариум. (Новое издание, исправленное и переработанное) - Виктор Суворов (Резун) - Шпионский детектив
- Интеллектуальная собственность и закон. Теоретические вопросы - И Близнец - Юриспруденция
- Срубить крест[журнальный вариант] - Владимир Фирсов - Социально-психологическая
- О, Иерусалим! - Ларри Коллинз - История