Похождения видов. Вампироноги, паукохвосты и другие переходные формы в эволюции животных - Андрей Юрьевич Журавлёв
0/0

Похождения видов. Вампироноги, паукохвосты и другие переходные формы в эволюции животных - Андрей Юрьевич Журавлёв

  • Дата:24.10.2025
  • Категория: Биология
  • Название: Похождения видов. Вампироноги, паукохвосты и другие переходные формы в эволюции животных
  • Автор: Андрей Юрьевич Журавлёв
  • Просмотров:0
  • Комментариев:0
Уважаемые читатели!
Тут можно читать бесплатно Похождения видов. Вампироноги, паукохвосты и другие переходные формы в эволюции животных - Андрей Юрьевич Журавлёв. Жанр: Биология. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Похождения видов. Вампироноги, паукохвосты и другие переходные формы в эволюции животных - Андрей Юрьевич Журавлёв:
Эта книга о палеонтологии – единственной науке, которая способна показать, кем были предки разных существ, населяющих сегодняшнюю Землю. Еще совсем недавно мы даже не подозревали, что киты ведут свой род от парнокопытных, птицы – от динозавров, а жуки и пауки – конечно, через множество промежуточных стадий – от червей с хоботком и коготками на мягких лапках. Да, молекулярная биология может объяснить, кто чей родственник, и доказать, что птицы ближе к крокодилам, чем к черепахам, а киты – к бегемотам, чем к медведям. Но как выглядели эти птицекрокодилы или китобегемоты? Все живое постоянно менялось, все организмы на самом деле были переходными формами и, оказывается, выглядели совершенно иначе, чем можно предположить, изучая современный природный мир. Все эти формы охватить в одной книге невозможно, но попробуем рассказать о самых интересных.
Читем онлайн Похождения видов. Вампироноги, паукохвосты и другие переходные формы в эволюции животных - Андрей Юрьевич Журавлёв

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 102 103 104 105 106 107 108 109 110 ... 155
щечными шипами по краям – цефалон (от греч. κεφαλη – голова).

Просуществовали трилобиты до самого конца пермского периода (252 млн лет назад), но после позднеордовикского вымирания заметно сократились и разнообразие видов, и численность. За это время, изменяя только форму и размеры панциря (некоторые особи превышали 0,6 м в длину), они успели наплодить множество непохожих друг на друга и порой очень причудливых существ (даже число описанных форм превысило 20 000). Трилобиты – редкая группа беспозвоночных, которым посвящают отдельные научно-популярные издания. (Такую книгу, с большой любовью написанную знающим «трилобитоведом» Ричардом Форти из Музея естественной истории в Лондоне, удачно перевели на русский язык: «Трилобиты. Свидетели эволюции»[45].) Для многих любителей окаменелостей их глазастые и членистые панцири стали завидной добычей. Увы, скупая за приличные суммы вычурных ордовикских трилобитов из Ленинградской области и Китая и девонских из Марокко, они не подозревают, что это полные или частичные подделки из современных, быстро застывающих композитов, куда добавили толченой породы. Выставленную на интернет-распродаже фигурку в микроскоп не рассмотришь и в компьютерный томограф не положишь.

Еще трилобиты помогают завалить нерадивых студентов на экзамене или зачете по палеонтологии. Когда ни одного попадания в цель не случается, можно задать контрольный вопрос: «А что у трилобита было вот здесь?» – и ткнуть ручкой в самую выпуклую часть головного щита, глабель (лат. glabellus – гладкий). После ответа: «Мозг», – поясняешь: «Не мозг, а большой желудок. Как и у вас». Впрочем, второе предложение произносится мысленно. Можно еще спросить в стиле ЕГЭ: «Почему трилобиты так называются – у них трехлопастное строение, трехчленное тело или три лба?» И не думайте, что последняя версия никем не признается за верную.

От фусианхойи и ее родственников трилобиты унаследовали трехчастное строение сегментов: была осевая часть, где располагались внутренние органы, и две боковые (плевральные) лопасти, под которыми скрывались двуветвистые конечности. На отдельных сегментах боковые лопасти иногда сильно удлинялись в сторону «хвоста» или вверх, превращаясь в красивые дуговидные шипы (рис. 26.3). Вместе всех туловищных и хвостовых сегментов могло насчитываться с десяток, а могло и более 100. Причем их число особенно сильно варьировало у кембрийских видов (и даже в популяциях одного вида), а у более поздних стабилизировалось и сократилось до 6–13 в разных группах. За исключением пары одноветвистых антенн, высовывавшихся вперед из-под цефалона, прочие конечности разнились лишь немного – по степени развития жевательных отростков и размеру (рис. 26.4). Всего-то отличий от предшественников было, что передние сегменты отчасти слились в головной щит (членистость по-прежнему проступала в очертаниях глабели), а хвостовые – в пигидий (от греч. πυγη – зад). (Хвостовой щит похож на головной, но без глаз, и шипы, если есть, торчат не в сторону туловища, а наружу.) Вот это и был минимальный набор элементов, позволивший этим сугубо морским животным, в большинстве 3–10 см длиной, просуществовать 270 или 280 млн лет.

И не забудем о сложных глазах, которые, впрочем, уже были у фусианхойи. Правда, каменные органы зрения – это ноу-хау именно трилобитов. Благодаря рентгеновской спектроскопии и компьютерной томографии высокого разрешения можно даже увидеть, что находится внутри этих немигающих глаз. У первых представителей данной группы небольшое число фасеток выстраивалось в два узких ряда по бокам от глабели. Настоящих линз в глазах не было. Зато был хрустальный конус, который исправлял эффект преломления светового луча в жидкой среде. (Вопреки названию, хрустальный конус состоит у раков и насекомых не из кремнезема, а из хитина, а у трилобитов – из кальцита.) Конус фокусировал свет на омматидии, и луч порождал электрический сигнал, который передавался по нервным окончаниям омматидия, образующим зрительный нерв, в другие части мозга. Омматидий представлял собой звездчатый в поперечном сечении столбик (около 15 мкм в диаметре), образованный двойным кольцом клиновидных клеток (рис. 26.5б).

Значит, устроены эти глаза были точно так же, как у многих раков и насекомых: воспринимающий аппарат омматидия, рабдом, состоял из восьми светочувствительных клеток, плотно замкнутых экранирующими пигментными тельцами (чтобы попавшие в рабдом фотоны не «разбегались» в стороны). Глаза подобного строения называются аппозиционными и служат в дневное время.

В отличие от более поздних «сложноглазых» членистоногих, у древнейших трилобитов пигментные клетки выстилали округлые ямки под каждым конусом, а не образовывали внешний слой омматидия. Такие зрительные приспособления годились для жизни на дне, где любоваться особенно было не на что и хватать приходилось все, что движется или хотя бы пахнет едой. Держаться ближе к поверхности животным не позволял высокий уровень ультрафиолетовой радиации.

Трилобитовые «искусственные» линзы сделали глаза гораздо совершенней. (Известковыми хрусталиками для глаз пользуются также иглокожие офиуры и моллюски хитоны, но у них линзы рассеяны по всему панцирю и позволяют отличить разве что ночь ото дня.) Наиболее сложно устроенные глаза появились у ордовикских факопид (Phacopida; от греч. ϕακοζ – чечевица, линза и οπασιζ – зрение). У них каждая линза (до 2 мм в диаметре) состояла из трех частей: внешней, которая представляла собой совершенную апланатическую линзу Рене Декарта (у некоторых – Христиана Гюйгенса), срединного ядра и чаши. Внешняя линза не была цельным кристаллом, ее образовывали отдельные оптические цилиндры, изогнутые так, что к поверхности линзы они подходили под прямым углом на любом ее участке (рис. 26.5а). Такая конструкция четко фокусировала луч на пигментных клетках, помогала избежать сферических искажений – самой большой проблемы оптических приборов – и хорошо видеть в жидкой среде благодаря близкому коэффициенту преломления магнезиального кальцита и воды. Впрочем, отдельные «узлы» линзы могли состоять из разных карбонатных минералов. Кроме того, эта оптическая система была бифокальной (или даже трифокальной), что позволяло, как в бифокальных очках, рассматривать и удаленные объекты, и те, что прямо под носом (антеннами). Причем если у человеческих очков центры фокусировки находятся в верхней и нижней частях, то в «очках» трилобитовых эти центры располагались в средней, каплевидной, части линзы (ближнее зрение) и на ее периферии (дальнее).

По мере роста трилобита глаза и число линз увеличивались, поэтому угол зрения постепенно менялся от 30° до 90°. Соседние омматидии использовались для получения объемного изображения. Многократно засекая один и тот же объект (возможного хищника или жертву) парой соседних омматидиев, фиксировавших интенсивность поступавшего в них света (т. е. тень, отбрасываемую объектом), трилобит измерял расстояние до него и скорость его передвижения. Выполнение подобных расчетов подразумевает относительно сложную организацию мозга у этих существ.

Чувствительность отдельного омматидия зависит от количества улавливаемых им фотонов, и по мере увеличения диаметра линз и рабдомов, а также длины рабдомов зрение улучшается. Что и происходило в эволюции трилобитов. Наиболее совершенные

1 ... 102 103 104 105 106 107 108 109 110 ... 155
На этой странице вы можете бесплатно читать книгу Похождения видов. Вампироноги, паукохвосты и другие переходные формы в эволюции животных - Андрей Юрьевич Журавлёв бесплатно.
Похожие на Похождения видов. Вампироноги, паукохвосты и другие переходные формы в эволюции животных - Андрей Юрьевич Журавлёв книги

Оставить комментарий

Рейтинговые книги