Рассказ предка. Паломничество к истокам жизни - Ричард Докинз
- Дата:15.07.2024
- Категория: Научные и научно-популярные книги / Образовательная литература
- Название: Рассказ предка. Паломничество к истокам жизни
- Автор: Ричард Докинз
- Просмотров:3
- Комментариев:0
Аудиокнига "Рассказ предка. Паломничество к истокам жизни"
📚 "Рассказ предка. Паломничество к истокам жизни" - это захватывающее путешествие в мир эволюции и происхождения жизни на Земле. В этой книге Ричард Докинз рассказывает о том, каким образом развивалась жизнь на планете, начиная с самых ранних форм и заканчивая современными видами.
Главный герой книги - это сам процесс эволюции, который автор представляет как удивительное и сложное путешествие через миллиарды лет. Он показывает, каким образом естественный отбор и генетические мутации формировали разнообразие живых организмов, которые мы видим сегодня.
🎧 На сайте knigi-online.info вы можете бесплатно и без регистрации слушать аудиокнигу "Рассказ предка. Паломничество к истокам жизни" на русском языке. Мы собрали лучшие бестселлеры и интересные произведения для вашего удовольствия.
Об авторе:
Ричард Докинз - известный биолог, эволюционный биолог, автор множества научно-популярных книг. Его работы посвящены исследованию эволюции и происхождению жизни, а также критике религиозных убеждений. Докинз является ярым сторонником научного метода и рационального мышления.
Не упустите возможность окунуться в увлекательный мир эволюции с аудиокнигой "Рассказ предка. Паломничество к истокам жизни". Слушайте и погружайтесь в удивительные открытия исследователей прошлого и настоящего!
Погрузитесь в мир знаний и откройте для себя новые горизонты с категорией аудиокниги: Образовательная литература.
Шрифт:
Интервал:
Закладка:
Диаграмму, построенную Верхейеном и его коллегами (см. вкладку), легко истолковать неверно. Очень заманчиво представить, что кружки обозначают виды, сконцентрированные вокруг родительского вида, как на генеалогической схеме. Или что они обозначают мелкие озера, группирующиеся вокруг крупных, как на карте маршрутов авиалиний. Но на самом деле на диаграмме другое. Кружки обозначают не виды и не географические точки. Каждый из них – гаплотип, “ген”, определенный участок ДНК, которым конкретная рыба обладает или не обладает.
Каждый “ген”, таким образом, представлен одним кружком. Размер кружков отражает общее число особей, имеющих данный “ген” и обитающих во всех обследованных озерах и реках. Обратите внимание: видовая принадлежность здесь не учитывается. Маленькие кружки обозначают “ген”, носителем которого является всего одна особь. “Ген” № 25 обнаружен у 34 особей. Число точек на линии, соединяющей два кружка, отражает минимальное количество мутаций, необходимых для перехода от одного к другому. Как вы помните из “Рассказа Гиббона”, это соответствует одной из версий метода парсимонии. Маленькие черные точки обозначают промежуточные “гены”, не найденные у реальных рыб, но предположительно существовавшие. Представленное древо – неукорененное и не отражает направление эволюции.
Географические данные представлены на диаграмме только в виде цветовых обозначений. Каждый кружок представляет собой круговую (секторную) диаграмму, которая указывает, сколько раз интересующий нас “ген” встречается в каждом из обследованных озер или рек (смотри цветовой ключ внизу диаграммы). “Гены” №№ 12, 47, 7, 56 найдены лишь в озере Киву (полностью красные кружки). “Гены” №№ 77, 92 обнаружены лишь в озере Виктория (полностью синие). “Ген” № 25, самый многочисленный из всех, встречается в основном в Киву, но также широко представлен в “озерах Уганды” (группа малых озер к западу от озера Виктория). Диаграмма показывает, что “ген” № 25 также найден в реке Виктория-Нил, в самом озере Виктория и в озерах Эдвард и Джордж (эти два соседних водоема объединены для облегчения расчетов). Не забывайте, что диаграмма не содержит информации о видах! Синий сектор кружка, обозначающего “ген” № 25, указывает, что он обнаружен у двух особей из озера Виктория. Мы не знаем, относятся ли эти особи к одному виду. Также нам неизвестно, принадлежат ли они к тому же виду, что и обладатели этого “гена” из Киву. Суть не в этом. Эта диаграмма должна очень понравиться приверженцам теории “эгоистичного гена”.
Оказывается, источником видового разнообразия является небольшое озеро Киву. Генетические данные указывают, что озеро Виктория было заселено хаплохромисовыми цихлидами в результате двух волн миграции из Киву. Пересыхание 15 тыс. лет назад никоим образом не уничтожило видовое разнообразие, а, возможно, даже увеличило его: бассейн озера Виктория распался на ряд озер. Что касается древних популяций цихлид в самом Киву (сегодня там обитает 26 видов, включая 15 эндемичных хаплохромисов), то генетические данные указывают на то, что они приплыли из танзанийских рек.
Эта работа – лишь начало. И страшно, и здорово представить, какие результаты мы можем получить, применив эти методы ко всем животным, обитающим на “архипелагах” нашей планеты.
Рассказ Слепой пещерной рыбы
В пещерах, где условия жизни сильно отличаются от обычных, обитают животные разных видов, включая плоских червей, насекомых, пресноводных рачков, саламандр и рыб. Все они независимо претерпели сходные эволюционные изменения. Некоторые из них кажутся конструктивными: отсроченное размножение; немногочисленные, однако крупные, яйца; увеличенная продолжительность жизни и так далее. В качестве компенсации бесполезных в темноте глаз пещерные животные приобрели повышенную чувствительность к запаху и вкусу. У многих из них теперь длинные чувствительные усики, а рыбы обзавелись усовершенствованной боковой линией (орган восприятия давления, ощущения которого мы не можем понять, – но для рыбы он очень важен). Другие изменения принято считать регрессивными. Пещерные обитатели нередко утрачивают глаза и пигментацию кожи.
Слепая мексиканская тетра (Astyanax mexicanus, также известная как A. fasciatus) особенно интересна тем, что разные ее популяции в пределах одного вида независимо заселили пещеры через ручьи и очень быстро претерпели сходные регрессивные изменения, связанные с жизнью в пещерах. Эти изменения можно сравнивать с признаками их родственников того же вида, живущих на свету. Мексиканские слепые пещерные рыбы обитают только в мексиканских пещерах – в основном известняковых, расположенных в одной долине. Когда-то каждую популяцию этих рыб выделяли в самостоятельный вид. Теперь их считают формами одного вида, Astyanax mexicanus, который распространен в наземных водоемах от Мексики до Техаса. Слепая форма найдена в 29 пещерах. Судя по всему, представители по крайней мере некоторых из этих пещерных популяций приобрели рудиментарные глаза вместе с белой окраской независимо: живущие на поверхности тетры много раз заселяли пещеры, всякий раз утрачивая глаза и пигментацию кожи.
Интересно, что некоторые популяции, по всей вероятности, жили в пещерах дольше, чем другие. Это видно по тому, насколько далеко они ушли в эволюции “пещерных” признаков. Крайний случай обнаружен в пещере Пачон, где, как считается, обитает самая древняя популяция пещерных рыб. На другом краю диапазона находится пещера Микос. Обитающая там популяция почти не изменилась по сравнению с обычной, живущей на поверхности формой. При этом ни одна из пещерных популяций не могла жить там особенно долго, потому что это южноамериканский вид, попавший в Мексику не раньше формирования Панамского перешейка. А это произошло 3 млн лет назад (Великий межамериканский обмен). Я предполагаю, что пещерные популяции тетры гораздо моложе.
Легко понять, почему обитателям пещер не нужны глаза. Но не так просто понять, почему при условии, что у их недавних предков были нормальные функциональные глаза, пещерная рыба старается поскорее от них избавиться. Ведь всегда есть вероятность, пусть небольшая, что рыб вынесет течением из пещеры. Разве не разумно сберечь глаза – на всякий случай? Но эволюция действует не так. Создание глаз, как и чего угодно, не бывает бесплатным. Те рыбы, которые направляют ресурсы в какой-нибудь другой сегмент “экономики” своего тела, получат преимущество перед конкурентами, сохраняющими полноценные глаза[86]. Если вероятность того, что глаза понадобятся когда-нибудь, слишком мала по сравнению с экономическими затратами на их содержание, то глаза исчезают. Когда дело касается естественного отбора, важны и небольшие преимущества. Некоторые биологи не принимают экономические вопросы во внимание. Им достаточно сослаться на накопление случайных изменений в процессе развития глаза, которые естественным отбором не “штрафуются”, потому что не имеют значения. По их мнению, способов быть слепым гораздо больше, чем способом быть зрячим – и поэтому случайные изменения по закону вероятности приводят к слепоте.
Тут мы подходим к основной мысли “Рассказа Слепой пещерной рыбы”. Это закон Долло, который гласит: эволюция необратима. Может показаться, что вторичная слепота пещерных рыб противоречит этому закону. Ведь эволюция как бы обращается вспять, редуцируя глаза, которые так старательно выращивали предки этих рыб. Да и есть ли причины, по которым эволюция должна быть необратимой? Нет, таких причин не существует. Закон Долло нужно понимать правильно.
В долгосрочной перспективе эволюция не бывает строго и целиком обратимой. Но ключевые слова здесь – “строго и целиком”. Вероятность повторения определенного эволюционного пути равна нулю. Путей слишком много. Изменение хода эволюции на строго обратное – лишь частный случай повторения конкретного пути. С учетом огромного количества возможных путей вероятность повторения одного сценария (включая сценарий обращения эволюции вспять) ничтожно мала. Но при этом нет закона, который запрещал бы обратный ход эволюции.
Дельфины происходят от наземных млекопитающих. Они вернулись в море и по многим внешним признакам теперь напоминают рыб. Но нельзя сказать, что эволюция повернула вспять. Хотя дельфины похожи на рыб, большинство их признаков ясно указывает на то, что они – млекопитающие. Если бы эволюция действительно повернула вспять, дельфины превратились бы в рыб. Может быть, некоторые “рыбы” и есть дельфины: обратный ход эволюции был настолько точным, что мы этого не заметили? Здесь вы можете смело ставить на закон Долло – особенно если оценить эволюционные изменения на молекулярном уровне.
Такую интерпретацию закона Долло можно назвать термодинамической. Она отсылает нас ко второму началу термодинамики, согласно которому в замкнутой системе энтропия увеличивается. Бытовой аналогией (даже больше, чем аналогией) второго начала может служить библиотека. Без библиотекаря, который старательно возвращает книги на свои места, библиотека быстро превращается в хаос. Книги перемешиваются, люди оставляют их на столе или ставят не на ту полку. Со временем энтропия неизбежно увеличивается. Вот почему в каждой библиотеке должен быть библиотекарь, следящий за порядком.
- Cinematographic Dictionary English-Russian Illustrated - Диана Кемаловна Коркмазова - Хобби и ремесла / Языкознание
- Развитие личностных качеств обучающихся в учебной и спортивной деятельности - Коллектив авторов - Психология, личное
- Исследование о природе и причинах богатства народов - Адам Смит - Образовательная литература
- Академия при царском дворе. Греческие ученые и иезуитское образование в России раннего Нового времени - Николаос Хриссидис - История
- Язык программирования C++. Пятое издание - Стенли Липпман - Программирование