Рассказ предка. Паломничество к истокам жизни - Ричард Докинз
- Дата:15.07.2024
- Категория: Научные и научно-популярные книги / Образовательная литература
- Название: Рассказ предка. Паломничество к истокам жизни
- Автор: Ричард Докинз
- Просмотров:3
- Комментариев:0
Аудиокнига "Рассказ предка. Паломничество к истокам жизни"
📚 "Рассказ предка. Паломничество к истокам жизни" - это захватывающее путешествие в мир эволюции и происхождения жизни на Земле. В этой книге Ричард Докинз рассказывает о том, каким образом развивалась жизнь на планете, начиная с самых ранних форм и заканчивая современными видами.
Главный герой книги - это сам процесс эволюции, который автор представляет как удивительное и сложное путешествие через миллиарды лет. Он показывает, каким образом естественный отбор и генетические мутации формировали разнообразие живых организмов, которые мы видим сегодня.
🎧 На сайте knigi-online.info вы можете бесплатно и без регистрации слушать аудиокнигу "Рассказ предка. Паломничество к истокам жизни" на русском языке. Мы собрали лучшие бестселлеры и интересные произведения для вашего удовольствия.
Об авторе:
Ричард Докинз - известный биолог, эволюционный биолог, автор множества научно-популярных книг. Его работы посвящены исследованию эволюции и происхождению жизни, а также критике религиозных убеждений. Докинз является ярым сторонником научного метода и рационального мышления.
Не упустите возможность окунуться в увлекательный мир эволюции с аудиокнигой "Рассказ предка. Паломничество к истокам жизни". Слушайте и погружайтесь в удивительные открытия исследователей прошлого и настоящего!
Погрузитесь в мир знаний и откройте для себя новые горизонты с категорией аудиокниги: Образовательная литература.
Шрифт:
Интервал:
Закладка:
ДНК тоже подвержена проблеме повторного подсчета и нередко представляет собой молекулярный аналог конечностей многоножки. Иногда последовательность представлена многими копиями в разных частях генома. Примерно половина ДНК человека состоит из множественных копий бессмысленных последовательностей, так называемых мобильных элементов, которые, возможно, являются паразитами, захватившими аппарат репликации ДНК, чтобы расселиться по геному. Один из этих паразитических элементов, Alu, у большинства людей представлен более чем миллионом копий. (С ним мы еще встретимся в “Рассказе Ревуна”.) Даже в случае кодирующих участков ДНК гены в некоторых случаях могут быть представлены десятками идентичных (или почти идентичных) копий. Однако на практике повторный подсчет – не такая уж большая проблема: дублированные последовательности ДНК довольно легко обнаружить.
Опасно другое. Иногда обширные области ДНК проявляют таинственное сходство с последовательностями ДНК отдаленных видов. Никто не сомневается, что птицы ближе к черепахам, ящерицам, змеям и крокодилам, чем к млекопитающим (рандеву № 16). Однако последовательности ДНК птиц и млекопитающих имеют большее сходство, чем можно ожидать. И у тех, и у других в некодирующей ДНК наблюдается избыток пар Г – Ц. Пары Г – Ц химически стабильнее пар A – T. Возможно, теплокровные виды (птицы и млекопитающие) нуждаются в более “крепкой” ДНК. Каково бы ни было объяснение, мы должны быть осторожны и не позволять этому смещению Г – Ц убедить нас в том, что все теплокровные животные – близкие родственники. Хотя специалисты по систематике утверждают, что ДНК – это все, о чем можно мечтать, нельзя забывать: мы по-прежнему многого не понимаем в геноме.
Как использовать информацию, заключенную в ДНК? Литературоведы, изучая происхождение текстов, используют ту же технику, что и эволюционные биологи. И, хотя это звучит неправдоподобно, одним из лучших примеров является проект по изучению “Кентерберийских рассказов”. Участники этого международного проекта использовали инструменты эволюционной биологии, чтобы проследить историю 85 списков “Кентерберийских рассказов”. Эти манускрипты – наша главная надежда на восстановление утраченного оригинала. Как и ДНК, текст Чосера уцелел благодаря многократному копированию. При этом каждый раз при копировании возникали случайные изменения. Тщательно оценив накопленные отличия, исследователи реконструируют историю копирования и строят эволюционное древо – потому что это настоящий эволюционный процесс, при котором с каждым поколением накапливаются ошибки. Способы реконструкции эволюции ДНК и текста настолько похожи, что каждый из них может служить иллюстрацией другого.
Отвлечемся от гиббонов и займемся Чосером, а именно четырьмя из 85 списков “Кентерберийских рассказов”. Эти рукописи называются: “Британская библиотека” (British Library), “Крайст-Черч” (Christ Church), “Эджертон” (Edgerton) и “Хенгурт” (Hengwrt)[14]. Вот две первые строки “Общего пролога”:
Когда Апрель обильными дождямиРазрыхлил землю, взрытую ростками…[15]
Теперь сравним. Список из Британской библиотеки гласит:
Whan that Aprylle / wyth hys showres sooteThe drowhte of Marche / hath pcede to the rote
“Крайст-Черч”:
Whan that Auerell wt his shoures sooteThe droght of Marche hath pced to the roote
“Эджертон”:
Whan that Aprille with his showres sooteThe drowte of marche hath pced to the roote
“Хенгурт”:
Whan that Aueryll wt his shoures sooteThe droghte of March / hath pced to the roote
Первое, что нужно сделать с последовательностью ДНК или текстом, – выявить сходства и различия. Для этого нужно их “выровнять” – а это бывает не так-то просто: тексты могут быть фрагментарными и иметь разную длину. Здесь очень помогает компьютер, но чтобы выровнять первые две строки “Общего пролога”, он не понадобится. На рисунке выделены 14 позиций, по которым тексты не совпадают.
Вторая и пятая позиции представлены даже не двумя вариантами, а тремя. В целом это дает 16 “различий”. После того, как мы составили список различий, нужно определить, какое древо лучше всего их объясняет. Есть множество способов это сделать, и все их можно применить и к животным, и к текстам. Самый простой пример – группировка текстов на основе общего сходства. Как правило, при этом используют варианты следующего метода. Сначала мы находим пару наиболее сходных текстов. Затем мы используем эту пару в качестве единого усредненного текста и сравниваем его с оставшимися, чтобы найти следующую пару наиболее сходных текстов. Так мы последовательно формируем новые пары, пока не получится генеалогическая схема. Такой способ построения деревьев используется чаще всего и называется методом поиска ближайшего соседа (neighbourpmmg). Он прост, но не учитывает логику эволюционного процесса: мы просто оцениваем сходство. Поэтому сторонники “кла-дистического” подхода в систематике (он основан на принципах эволюции) предпочитают иные методы. Первым был разработан метод парсимонии (экономии).
Экономия, как мы узнали из “Рассказа Орангутана”, означает здесь экономичность объяснения. В эволюции (животного ли, манускрипта ли) самым экономичным является объяснение, подразумевающее наименьшее число эволюционных изменений. Если два текста объединены общим признаком, самое экономичное объяснение будет гласить: оба текста унаследовали этот признак от общего предка. Конечно, и у этого правила есть исключения, однако чаще всего оно верно. Метод парсимонии – по крайней мере в теории – сравнивает все возможные деревья и выбирает то, в котором количество изменений минимально.
Когда мы сравниваем деревья по их экономичности, некоторые виды признаков оказываются бесполезными. Признаки, уникальные для манускрипта или вида животного, неинформативны. В методе поиска ближайшего соседа такие признаки учитываются, однако метод парсимонии целиком их игнорирует. Метод парсимонии опирается на информативные признаки, то есть такие, которые наблюдаются более чем в одном манускрипте. Предпочтительным древом является объясняющее максимальное количество информативных признаков общим происхождением. В строках Чосера пять таких информативных признаков. Четыре из них делят манускрипты на следующие группы:
{“Британская библиотека” + “Эджертон”} и (“Крайст-Черч” + “Хенгурт”}
Эти признаки выделены первой, третьей, седьмой и восьмой вертикальными линиями. Пятый признак – косая черта – выделен двенадцатой вертикальной линией. По этому признаку манускрипты подразделяются на другие группы:
{“Британская библиотека” + “Хенгурт”} и {“Крайст-Черч” + “Эджертон”}
Полученные результаты противоречат друг другу. Мы не можем построить древо, в котором каждое изменение отображалось бы лишь один раз. Самым приемлемым окажется древо, изображенное ниже (заметьте – оно неукорененное). Эта схема сокращает противоречия до минимума: мы повторно учитываем лишь один признак – косую черту.
Вообще-то я не уверен, что мы сделали правильное предположение. В текстах часто встречаются совпадения и реверсии, особенно если смысл строк при этом не меняется. Средневековый переписчик наверняка не испытывал угрызений совести, изменяя написание, и еще меньше его волновали вставки или удаления знаков, например косой черты. В этом случае информативнее такие изменения, как перестановка слов. В генетике аналогами таких изменений являются “редкие геномные изменения”: крупные вставки, делеции и дупликации ДНК. Мы можем оценить информативность, присвоив большее или меньшее значение (вес) различным типам признаков. Недостоверные или слишком частые изменения при подсчете будут иметь меньший вес. А редкие изменения, которые служат надежными показателями родства, – больший вес. Повышенный вес признака говорит о том, что мы не хотим учитывать его дважды. Таким образом, наиболее экономное древо – то, которое имеет наименьший общий вес.
Метод парсимонии широко используется для поиска эволюционных деревьев. Но в том случае, когда конвергенций и реверсий слишком много – а это случается и с последовательностями ДНК, и с текстами Чосера, – метод парсимонии может оказаться недостоверным. Эта проблема известна как “эффект притяжения длинных ветвей”.
Кладограммы – как укорененные, так и неукорененные – отражают лишь порядок ветвления. Филограммы, или филогенетические деревья, похожи на кладограммы, но в них длина ветвей несет дополнительную информацию. Обычно длина ветвей отражает эволюционное расстояние: длинные ветви обозначают крупные изменения, а короткие – мелкие. На основе первой строки “Кентерберийских рассказов” можно построить следующую филограмму.
- Cinematographic Dictionary English-Russian Illustrated - Диана Кемаловна Коркмазова - Хобби и ремесла / Языкознание
- Развитие личностных качеств обучающихся в учебной и спортивной деятельности - Коллектив авторов - Психология, личное
- Исследование о природе и причинах богатства народов - Адам Смит - Образовательная литература
- Академия при царском дворе. Греческие ученые и иезуитское образование в России раннего Нового времени - Николаос Хриссидис - История
- Язык программирования C++. Пятое издание - Стенли Липпман - Программирование