Основы объектно-ориентированного программирования - Бертран Мейер
- Дата:20.06.2024
- Категория: Компьютеры и Интернет / Прочая околокомпьтерная литература
- Название: Основы объектно-ориентированного программирования
- Автор: Бертран Мейер
- Просмотров:2
- Комментариев:0
Шрифт:
Интервал:
Закладка:
Заметьте, как тщательно был спроектирован механизм, дающий разработчикам шанс забыть об устаревшем стиле разбора вариантов (case-by-case). Если вы действительно хотите перехитрить динамическое связывание и отдельно проверять каждый вариант типа, вы можете это сделать, хотя вам и придется немало потрудиться. Так, вместо обычного f.display, использующего ОО-механизмы полиморфизма и динамического связывания, можно, - но не рекомендуется, - писать:
display (f: FIGURE) is
-- Отобразить f, используя алгоритм,
-- адаптируемый к истинной природе объекта.
local
r: RECTANGLE; t: TRIANGLE; p: POLYGON; s: SQUARE
sg: SEGMENT; e: ELLIPSE; c: CIRCLE;?
do
r ?= f; if r /= Void then "Использовать алгоритм вывода прямоугольника" end
t ?= f; if t /= Void then "Использовать алгоритм вывода треугольника" end
c ?= f; if c /= Void then "Использовать алгоритм вывода окружности" end
... и т.д. ...
end
На практике такая схема даже хуже, чем кажется, так как структура наследования имеет несколько уровней, а значит, усложнения управляющих конструкций не избежать.
Из-за трудностей написания таких закрученных конструкций попытки присваивания новичкам вряд ли придет в голову использовать их вместо привычной ОО-схемы. Однако и опытные специалисты должны помнить о возможности неправильного использования конструкции.
Немного похожий на попытку присваивания механизм "сужения" (narrowing) есть в языке Java. В случае несоответствия типов он выдает исключение. Это похоже на самоубийство, неуспех присваивания вовсе не является чем-то ненормальным, это ожидаемый результат. Оператор instanceof в языке Java выполняет проверку типов на совместимость.
Из-за отсутствия в языке универсальности Java активно использует оба механизма. Отчасти это связано с тем, что в отсутствие множественного наследования Java не содержит класса NONE, а потому не может выделить эквиваленту Void надежное место в собственной системе типов.
Типизация и повторное объявление
Повторное объявление компонентов не требует сохранения сигнатуры. Пока оно виделось нам как замена одного алгоритма другим или - для отложенного компонента - запись алгоритма, соответствующего ранее заданной спецификации.
Но, воплощая идею о том, что класс способен предложить более специализированную версию элемента, описанного его предком, мы вынуждены иногда изменять типы данных. Приведем два характерных примера.
Устройства и принтеры
Вот простой пример переопределения типа. Рассмотрим понятие устройства, включив предположение о том, что для любого устройства есть альтернатива, так что устройство можно заменить, если оно по каким-либо причинам недоступно:
class DEVICE feature
alternate: DEVICE
set_alternate (a: DEVICE) is
-- Пусть a - альтернативное устройство.
do
alternate := a
end
... Прочие компоненты ...
end
Принтер является устройством, так что использование наследования оправдано. Но альтернативой принтера может быть только принтер, но не дисковод для компакт-дисков или сетевая карта, - поэтому мы должны переопределить тип:
Рис. 16.6. Устройства и принтеры
class PRINTER inherit
DEVICE
redefine alternate, set_alternate
feature
alternate: PRINTER
set_alternate (a: PRINTER) is
-- Пусть a - альтернативное устройство.
... Тело как у класса DEVICE ...
... Прочие компоненты ...
end
В этом и проявляется специализирующая природа наследования.
Одно- и двусвязные элементы
В следующем примере мы обратимся к базовым структурам данных. Рассмотрим библиотечный класс LINKABLE, описывающий односвязные элементы, используемые в LINKED_LIST - одной из реализаций списков. Вот частичное описание класса:
indexing
description: "Односвязные элементы списка"
class LINKABLE [G] feature
item: G
right: LINKABLE [G]
put_right (other: LINKABLE [G]) is
-- Поместить other справа от текущего элемента.
do right := other end
... Прочие компоненты ...
end
Рис. 16.7. Односвязный элемент списка
Ряд приложений требуют двунаправленных списков. Класс TWO_WAY_LIST - наследник LINKED_LIST должен быть также наследником класса BI_LINKABLE, являющегося наследником класса LINKABLE.
Рис. 16.8. Параллельные иерархии
Двусвязный элемент списка имеет еще одно поле:
Рис. 16.9. Двусвязный элемент списка
В состав двунаправленных списков должны входить лишь двусвязные элементы (хотя последние, в силу полиморфизма, вполне можно внедрять и в однонаправленные структуры). Переопределив right и put_right, мы гарантируем однородность двусвязных списков.
indexing
description: "Элементы двусвязного списка"
class BI_LINKABLE [G] inherit
LINKABLE [G]
redefine right, put_right end
feature
left, right: BI_LINKABLE [G]
put_right (other: BI_LINKABLE [G]) is
-- Поместить other справа от текущего элемента.
do
right := other
if other /= Void then other.put_left (Current) end
end
put_left (other: BI_LINKABLE [G]) is
-- Поместить other слева от текущего элемента.
... Упражнение для читателя ...
... Прочие компоненты ...
invariant
right = Void or else right.left = Current
left = Void or else left.right = Current
end
(Попробуйте написать put_left. Здесь скрыта ловушка! См. приложение A.)
Правило повторного объявления типов
Примеры, рассмотренные выше, несмотря на все их различия, объединяет необходимость повторного объявления типов. Спуск по иерархии наследования означает специализацию классов, и в соответствии со специализацией изменяются типы функций и типы аргументов подпрограмм, как, например, a в set_alternate и other в put_right; изменяются типы запросов - alternate и right.
Этот аспект повторного объявления выражает следующее правило:
Правило повторного объявления типов
При повторном объявлении компонента можно заменить тип компонента (для атрибутов и функций) или тип формального параметра (для подпрограмм) любым совместимым типом.
Правило использует понятие совместимости типов. Связка "или", стоящая в тексте правила, не исключает того, что при повторном объявлении функции мы можем одновременно изменить как тип результата функции, так и тип одного или нескольких ее аргументов.
Любое повторное объявление ведет к специализации, а, следовательно, к изменению типов. Так, с переходом к двунаправленным спискам параметры и результаты функций сменили свой тип на BI_LINKABLE. Отсюда становится понятен тот термин, которым часто описывают политику редекларации типов, - ковариантная типизация (covariant typing), где приставка "ко" указывает на параллельное изменение типов при спуске по диаграмме наследования.
Ковариантная типизация таит в себе немало проблем, которые возникают у создателей компиляторов, нередко перекладывающих их решение на плечи разработчиков приложений.
Закрепленные объявления
Правило повторного объявления типов способно свести на нет целый ряд преимуществ наследования. Почему это происходит и каково решение данной проблемы?
Несогласованность типов
Рассмотрим пример с участием класса LINKED_LIST. Пусть мы имеем процедуру добавления в список нового элемента с заданным значением, который вставляется справа от текущего элемента. В деталях процедуры нет ничего необычного, но все же обратим внимание на потребность создания локальной сущности new типа LINKABLE, представляющей элемент списка, который будет создан и включен в список.
Рис. 16.10. Добавление элемента
put_right (v: G) is
-- Вставить элемент v справа от курсора.
-- Не передвигать курсор.
- Цифровой журнал «Компьютерра» № 184 - Коллектив Авторов - Прочая околокомпьтерная литература
- Концептуальное проектирование сложных решений - Андрей Теслинов - Психология, личное
- Журнал Компьютерра 19-26.01.2010 - Коллектив Авторов - Прочая околокомпьтерная литература
- Сущность технологии СОМ. Библиотека программиста - Дональд Бокс - Программирование
- Программист-прагматик. Путь от подмастерья к мастеру - Эндрю Хант - Программирование