Изучай Haskell во имя добра! - Миран Липовача
0/0

Изучай Haskell во имя добра! - Миран Липовача

Уважаемые читатели!
Тут можно читать бесплатно Изучай Haskell во имя добра! - Миран Липовача. Жанр: Программирование. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Изучай Haskell во имя добра! - Миран Липовача:
На взгляд автора, сущность программирования заключается в решении проблем. Программист всегда думает о проблеме и возможных решениях – либо пишет код для выражения этих решений.Язык Haskell имеет множество впечатляющих возможностей, но главное его свойство в том, что меняется не только способ написания кода, но и сам способ размышления о проблемах и возможных решениях. Этим Haskell действительно отличается от большинства языков программирования. С его помощью мир можно представить и описать нестандартным образом. И поскольку Haskell предлагает совершенно новые способы размышления о проблемах, изучение этого языка может изменить и стиль программирования на всех прочих.Ещё одно необычное свойство Haskell состоит в том, что в этом языке придаётся особое значение рассуждениям о типах данных. Как следствие, вы помещаете больше внимания и меньше кода в ваши программы.Вне зависимости от того, в каком направлении вы намерены двигаться, путешествуя в мире программирования, небольшой заход в страну Haskell себя оправдает. А если вы решите там остаться, то наверняка найдёте чем заняться и чему поучиться!Эта книга поможет многим читателям найти свой путь к Haskell.Отображения, монады, моноиды и другое!Всё сказано в названии: «Изучай Хаскель во имя добра!» – весёлый иллюстрированный самоучитель по этому сложному функциональному языку.С помощью оригинальных рисунков автора, отсылке к поп-культуре, и, самое главное, благодаря полезным примерам кода, эта книга обучает основам функционального программирования так, как вы никогда не смогли бы себе представить.Вы начнете изучение с простого материала: основы синтаксиса, рекурсия, типы и классы типов. Затем, когда вы преуспеете в основах, начнется настоящий мастер-класс от профессионала: вы изучите, как использовать аппликативные функторы, монады, застежки, и другие легендарные конструкции Хаскеля, о которых вы читали только в сказках.Продираясь сквозь образные (и порой безумные) примеры автора, вы научитесь:• Смеяться в лицо побочным эффектам, поскольку вы овладеете техниками чистого функционального программирования.• Использовать волшебство «ленивости» Хаскеля для игры с бесконечными наборами данных.• Организовывать свои программы, создавая собственные типы, классы типов и модули.• Использовать элегантную систему ввода-вывода Хаскеля, чтобы делиться гениальностью ваших программ с окружающим миром.Нет лучшего способа изучить этот мощный язык, чем чтение «Изучай Хаскель во имя добра!», кроме, разве что, поедания мозга его создателей.Миран Липовача (Miran Lipovača) изучает информатику в Любляне (Словения). Помимо его любви к Хаскелю, ему нравится заниматься боксом, играть на бас-гитаре и, конечно же, рисовать. У него есть увлечение танцующими скелетами и числом 71, а когда он проходит через автоматические двери, он притворяется, что на самом деле открывает их силой своей мысли.

Аудиокнига "Изучай Haskell во имя добра!"



📚 Хотите погрузиться в мир функционального программирования и освоить новый язык программирования? Тогда аудиокнига "Изучай Haskell во имя добра!" от автора Мирана Липовача - это то, что вам нужно!



Главный герой книги, начинающий программист, отправляется в увлекательное путешествие по Haskell, чтобы понять его принципы и особенности. Слушая эту аудиокнигу, вы узнаете, как создавать функциональные программы, работать с типами данных, рекурсией и многим другим.



Автор книги, Миран Липовач, является экспертом в области функционального программирования и преподавателем. Он делится своими знаниями и опытом, помогая слушателям легко освоить новый язык программирования.



На сайте knigi-online.info вы можете бесплатно и без регистрации слушать аудиокниги на русском языке. Здесь собраны бестселлеры и лучшие произведения различных жанров, включая программирование.



Не упустите возможность познакомиться с увлекательным миром Haskell и функционального программирования через аудиокнигу "Изучай Haskell во имя добра!" от Мирана Липовача. Погрузитесь в новые знания и расширьте свой кругозор!



Погрузитесь в мир программирования с категорией аудиокниг: Программирование.

Читем онлайн Изучай Haskell во имя добра! - Миран Липовача

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 83 84 85 86 87 88 89 90 91 ... 96

Если экземпляры классов Functor и Monad для типа подчиняются законам функторов и монад, между этими двумя нет никакой разницы (и все монады, которые мы до сих пор встречали, подчиняются обоим). Это примерно как функции pure и return, делающие одно и то же, – только одна имеет ограничение класса Applicative, тогда как другая имеет ограничение Monad.

Давайте опробуем функцию liftM:

ghci> liftM (*3) (Just 8)

Just 24

ghci> fmap (*3) (Just 8)

Just 24

ghci> runWriter $ liftM not $ Writer (True, "горох")

(False,"горох")

ghci> runWriter $ fmap not $ Writer (True, "горох")

(False,"горох")

ghci> runState (liftM (+100) pop) [1,2,3,4]

(101,[2,3,4])

ghci> runState (fmap (+100) pop) [1,2,3,4]

(101,[2,3,4])

Вы уже довольно хорошо знаете, как функция fmap работает со значениями типа Maybe. И функция liftM делает то же самое. При использовании со значениями типа Writer функция отображает первый компонент кортежа, который является результатом. Выполнение функций fmap или liftM с вычислением, имеющим состояние, даёт в результате другое вычисление с состоянием, но его окончательный результат изменяется добавленной функцией. Если бы мы не отобразили функцию pop с помощью (+100) перед тем, как выполнить её, она бы вернула (1, [2,3,4]).

Вот как реализована функция liftM:

liftM :: (Monad m) => (a –> b) –> m a –> m b

liftM f m = m >>= (x –> return (f x))

Или с использованием нотации do:

liftM :: (Monad m) => (a –> b) –> m a –> m b

liftM f m = do

   x <– m

   return (f x)

Мы передаём монадическое значение m в функцию, а затем применяем функцию к его результату, прежде чем поместить его обратно в контекст по умолчанию. Ввиду монадических законов гарантируется, что функция не изменит контекст; она изменяет лишь результат, который представляет монадическое значение.

Вы видите, что функция liftM реализована совсем не ссылаясь на класс типов Functor. Значит, мы можем реализовать функцию fmap (или liftM – называйте, как пожелаете), используя лишь те блага, которые предоставляют нам монады. Благодаря этому можно заключить, что монады, по крайней мере, настолько же сильны, насколько и функторы.

Класс типов Applicative позволяет нам применять функции между значениями с контекстами, как если бы они были обычными значениями, вот так:

ghci> (+) <$> Just 3 <*> Just 5

Just 8

ghci> (+) <$> Just 3 <*> Nothing

Nothing

Использование этого аппликативного стиля всё упрощает. Операция <$> – это просто функция fmap, а операция <*> – это функция из класса типов Applicative, которая имеет следующий тип:

(<*>) :: (Applicative f) => f (a –> b) –> f a –> f b

Так что это вроде fmap, только сама функция находится в контексте. Нам нужно каким-то образом извлечь её из контекста и с её помощью отобразить значение f a, а затем вновь собрать контекст. Поскольку все функции в языке Haskell по умолчанию каррированы, мы можем использовать сочетание из операций <$> и <*> между аппликативными значениями, чтобы применять функции, принимающие несколько параметров.

Однако, оказывается, как и функция fmap, операция <*> тоже может быть реализована, используя лишь то, что даёт нам класс типов Monad. Функция ap, по существу, – это <*>, только с ограничением Monad, а не Applicative. Вот её определение:

ap :: (Monad m) => m (a –> b) –> m a –> m b

ap mf m = do

   f <– mf

   x <– m

   return (fx)

Функция ap – монадическое значение, результат которого – функция. Поскольку функция, как и значение, находится в контексте, мы берём функцию из контекста и называем её f, затем берём значение и называем его x, и, в конце концов, применяем функцию к значению и представляем это в качестве результата. Вот быстрая демонстрация:

ghci> Just (+3) <*> Just 4

Just 7

ghci> Just (+3) `ap` Just 4

Just 7

ghci> [(+1),(+2),(+3)] <*> [10,11]

[11,12,12,13,13,14]

ghci> [(+1),(+2),(+3)] `ap` [10,11]

[11,12,12,13,13,14]

Теперь нам видно, что монады настолько же сильны, насколько и аппликативные функторы, потому что мы можем использовать методы класса Monad для реализации функций из класса Applicative. На самом деле, когда обнаруживается, что определённый тип является монадой, зачастую сначала записывают экземпляр класса Monad, а затем создают экземпляр класса Applicative, просто говоря, что функция pure – это return, а операция <*> – это ap. Аналогичным образом, если у вас уже есть экземпляр класса Monad для чего-либо, вы можете сделать для него экземпляр класса Functor, просто говоря, что функция fmap – это liftM.

Функция liftA2 весьма удобна для применения функции между двумя аппликативными значениями. Она определена вот так:

liftA2 :: (Applicative f) => (a –> b –> c) –> f a –> f b –> f c

liftA2 f x y = f <$> x <*> y

Функция liftM2 делает то же, но с использованием ограничения Monad. Есть также функции liftM3, liftM4 и liftM5.

Вы увидели, что монады не менее сильны, чем функторы и аппликативные функторы – и, хотя все монады, по сути, являются функторами и аппликативными функторами, у них необязательно имеются экземпляры классов Functor и Applicative. Мы изучили монадические эквиваленты функций, которые используются функторами и аппликативными функторами.

Функция join

Есть кое-какая пища для размышления: если результат монадического значения – ещё одно монадическое значение (одно монадическое значение вложено в другое), можете ли вы «разгладить» их до одного лишь обычного монадического значения? Например, если у нас есть Just (Just 9), можем ли мы превратить это в Just 9? Оказывается, что любое вложенное монадическое значение может быть разглажено, причём на самом деле это свойство уникально для монад. Для этого у нас есть функция join. Её тип таков:

join :: (Monad m) => m (m a) –> m a

Значит, функция join принимает монадическое значение в монадическом значении и отдаёт нам просто монадическое значение; другими словами, она его разглаживает. Вот она с некоторыми значениями типа Maybe:

ghci> join (Just (Just 9))

Just 9

ghci> join (Just Nothing)

Nothing

ghci> join Nothing

Nothing

В первой строке – успешное вычисление как результат успешного вычисления, поэтому они оба просто соединены в одно большое успешное вычисление. Во второй строке значение Nothing представлено как результат значения Just. Всякий раз, когда мы раньше имели дело со значениями Maybe и хотели объединить несколько этих значений – будь то с использованием операций <*> или >>= – все они должны были быть значениями конструктора Just, чтобы результатом стало значение Just. Если на пути возникала хоть одна неудача, то и результатом являлась неудача; нечто аналогичное происходит и здесь. В третьей строке мы пытаемся разгладить то, что возникло вследствие неудачи, поэтому результат – также неудача.

Разглаживание списков осуществляется довольно интуитивно:

ghci> join [[1,2,3],[4,5,6]]

[1,2,3,4,5,6]

Как вы можете видеть, функция join для списков – это просто concat. Чтобы разгладить значение монады Writer, результат которого сам является значением монады Writer, нам нужно объединить моноидное значение с помощью функции mappend:

ghci> runWriter $ join (Writer (Writer (1, "aaa"), "bbb"))

(1,"bbbaaa")

Внешнее моноидное значение "bbb" идёт первым, затем к нему конкатенируется строка "aaa". На интуитивном уровне, когда вы хотите проверить результат значения типа Writer, сначала вам нужно записать его моноидное значение в журнал, и только потом вы можете посмотреть, что находится внутри него.

Разглаживание значений монады Either очень похоже на разглаживание значений монады Maybe:

ghci> join (Right (Right 9)) :: Either String Int

Right 9

ghci> join (Right (Left "ошибка")) :: Either String Int

Left "ошибка"

ghci> join (Left "ошибка") :: Either String Int

Left "ошибка"

Если применить функцию join к вычислению с состоянием, результат которого является вычислением с состоянием, то результатом будет вычисление с состоянием, которое сначала выполняет внешнее вычисление с состоянием, а затем результирующее. Взгляните, как это работает:

ghci> runState (join (state $ s –> (push 10, 1:2:s))) [0,0,0]

1 ... 83 84 85 86 87 88 89 90 91 ... 96
На этой странице вы можете бесплатно читать книгу Изучай Haskell во имя добра! - Миран Липовача бесплатно.

Оставить комментарий

Рейтинговые книги