Изучай Haskell во имя добра! - Миран Липовача
0/0

Изучай Haskell во имя добра! - Миран Липовача

Уважаемые читатели!
Тут можно читать бесплатно Изучай Haskell во имя добра! - Миран Липовача. Жанр: Программирование. Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Изучай Haskell во имя добра! - Миран Липовача:
На взгляд автора, сущность программирования заключается в решении проблем. Программист всегда думает о проблеме и возможных решениях – либо пишет код для выражения этих решений.Язык Haskell имеет множество впечатляющих возможностей, но главное его свойство в том, что меняется не только способ написания кода, но и сам способ размышления о проблемах и возможных решениях. Этим Haskell действительно отличается от большинства языков программирования. С его помощью мир можно представить и описать нестандартным образом. И поскольку Haskell предлагает совершенно новые способы размышления о проблемах, изучение этого языка может изменить и стиль программирования на всех прочих.Ещё одно необычное свойство Haskell состоит в том, что в этом языке придаётся особое значение рассуждениям о типах данных. Как следствие, вы помещаете больше внимания и меньше кода в ваши программы.Вне зависимости от того, в каком направлении вы намерены двигаться, путешествуя в мире программирования, небольшой заход в страну Haskell себя оправдает. А если вы решите там остаться, то наверняка найдёте чем заняться и чему поучиться!Эта книга поможет многим читателям найти свой путь к Haskell.Отображения, монады, моноиды и другое!Всё сказано в названии: «Изучай Хаскель во имя добра!» – весёлый иллюстрированный самоучитель по этому сложному функциональному языку.С помощью оригинальных рисунков автора, отсылке к поп-культуре, и, самое главное, благодаря полезным примерам кода, эта книга обучает основам функционального программирования так, как вы никогда не смогли бы себе представить.Вы начнете изучение с простого материала: основы синтаксиса, рекурсия, типы и классы типов. Затем, когда вы преуспеете в основах, начнется настоящий мастер-класс от профессионала: вы изучите, как использовать аппликативные функторы, монады, застежки, и другие легендарные конструкции Хаскеля, о которых вы читали только в сказках.Продираясь сквозь образные (и порой безумные) примеры автора, вы научитесь:• Смеяться в лицо побочным эффектам, поскольку вы овладеете техниками чистого функционального программирования.• Использовать волшебство «ленивости» Хаскеля для игры с бесконечными наборами данных.• Организовывать свои программы, создавая собственные типы, классы типов и модули.• Использовать элегантную систему ввода-вывода Хаскеля, чтобы делиться гениальностью ваших программ с окружающим миром.Нет лучшего способа изучить этот мощный язык, чем чтение «Изучай Хаскель во имя добра!», кроме, разве что, поедания мозга его создателей.Миран Липовача (Miran Lipovača) изучает информатику в Любляне (Словения). Помимо его любви к Хаскелю, ему нравится заниматься боксом, играть на бас-гитаре и, конечно же, рисовать. У него есть увлечение танцующими скелетами и числом 71, а когда он проходит через автоматические двери, он притворяется, что на самом деле открывает их силой своей мысли.

Аудиокнига "Изучай Haskell во имя добра!"



📚 Хотите погрузиться в мир функционального программирования и освоить новый язык программирования? Тогда аудиокнига "Изучай Haskell во имя добра!" от автора Мирана Липовача - это то, что вам нужно!



Главный герой книги, начинающий программист, отправляется в увлекательное путешествие по Haskell, чтобы понять его принципы и особенности. Слушая эту аудиокнигу, вы узнаете, как создавать функциональные программы, работать с типами данных, рекурсией и многим другим.



Автор книги, Миран Липовач, является экспертом в области функционального программирования и преподавателем. Он делится своими знаниями и опытом, помогая слушателям легко освоить новый язык программирования.



На сайте knigi-online.info вы можете бесплатно и без регистрации слушать аудиокниги на русском языке. Здесь собраны бестселлеры и лучшие произведения различных жанров, включая программирование.



Не упустите возможность познакомиться с увлекательным миром Haskell и функционального программирования через аудиокнигу "Изучай Haskell во имя добра!" от Мирана Липовача. Погрузитесь в новые знания и расширьте свой кругозор!



Погрузитесь в мир программирования с категорией аудиокниг: Программирование.

Читем онлайн Изучай Haskell во имя добра! - Миран Липовача

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 65 66 67 68 69 70 71 72 73 ... 96

   Any x `mappend` Any y = Any (x || y)

Он называется Any, потому что x `mappend` y будет равно True, если любое из этих двух значений равно True. Даже когда три или более значений Bool, обёрнутых в Any, объединяются с помощью функции mappend, результат будет содержать True, если любое из них равно True.

ghci> getAny $ Any True `mappend` Any False

True

ghci> getAny $ mempty `mappend` Any True

True

ghci> getAny . mconcat . map Any $ [False, False, False, True]

True

ghci> getAny $ mempty `mappend` mempty

False

Другой возможный вариант экземпляра класса Monoid для типа Bool – всё как бы наоборот: заставить оператор && быть бинарной функцией, а затем сделать значение True единичным значением. Логическое И вернёт True, только если оба его параметра равны True.

Это объявление newtype:

newtype All = All { getAll :: Bool }

   deriving (Eq, Ord, Read, Show, Bounded)

А это экземпляр:

instance Monoid All where

   mempty = All True

   All x `mappend` All y = All (x && y)

Когда мы объединяем значения типа All с помощью функции mappend, результатом будет True только в случае, если все значения, использованные в функции mappend, равны True:

ghci> getAll $ mempty `mappend` All True

True

ghci> getAll $ mempty `mappend` All False

False

ghci> getAll . mconcat . map All $ [True, True, True]

True

ghci> getAll . mconcat . map All $ [True, True, False]

False

Так же, как при использовании умножения и сложения, мы обычно явно указываем бинарные функции вместо оборачивания их в значения newtype и последующего использования функций mappend и mempty. Функция mconcat кажется полезной для типов Any и All, но обычно проще использовать функции or и and. Функция or принимает списки значений типа Bool и возвращает True, если какое-либо из них равно True. Функция and принимает те же значения и возвращает значение True, если все из них равны True.

Моноид Ordering

Помните тип Ordering? Он используется в качестве результата при сравнении сущностей и может иметь три значения: LT, EQ и GT, которые соответственно означают «меньше, чем», «равно» и «больше, чем».

ghci> 1 `compare` 2

LT

ghci> 2 `compare` 2

EQ

ghci> 3 `compare` 2

GT

При использовании чисел и значений типа Bool поиск моноидов сводился к просмотру уже существующих широко применяемых функций и их проверке на предмет того, проявляют ли они какое-либо поведение, присущее моноидам. При использовании типа Ordering нам придётся приложить больше старания, чтобы распознать моноид. Оказывается, его экземпляр класса Monoid настолько же интуитивен, насколько и предыдущие, которые мы уже встречали, и кроме того, весьма полезен:

instance Monoid Ordering where

   mempty = EQ

   LT `mappend` _ = LT

   EQ `mappend` y = y

   GT `mappend` _ = GT

Экземпляр определяется следующим образом: когда мы объединяем два значения типа Ordering с помощью функции mappend, сохраняется значение слева, если значение слева не равно EQ. Если значение слева равно EQ, результатом будет значение справа. Единичным значением является EQ. На первый взгляд, такой выбор может показаться несколько случайным, но на самом деле он имеет сходство с тем, как мы сравниваем слова в алфавитном порядке. Мы смотрим на первые две буквы, и, если они отличаются, уже можем решить, какое слово шло бы первым в словаре. Если же первые буквы равны, то мы переходим к сравнению следующей пары букв, повторяя процесс[13].

Например, сравнивая слова «ox» и «on», мы видим, что первые две буквы каждого слова равны, а затем продолжаем сравнивать вторые буквы. Поскольку «x» в алфавите идёт после «n», мы знаем, в каком порядке должны следовать эти слова. Чтобы лучше понять, как EQ является единичным значением, обратите внимание, что если бы мы втиснули одну и ту же букву в одну и ту же позицию в обоих словах, их расположение друг относительно друга в алфавитном порядке осталось бы неизменным; к примеру, слово «oix» будет по-прежнему идти следом за «oin».

Важно, что в экземпляре класса Monoid для типа Ordering выражение x `mappend` y не равно выражению y `mappend` x. Поскольку первый параметр сохраняется, если он не равен EQ, LT `mappend` GT в результате вернёт LT, тогда как GT `mappend` LT в результате вернёт GT:

ghci> LT `mappend` GT

LT

ghci> GT `mappend` LT

GT

ghci> mempty `mappend` LT

LT

ghci> mempty `mappend` GT

GT

Хорошо, так чем же этот моноид полезен? Предположим, мы пишем функцию, которая принимает две строки, сравнивает их длину и возвращает значение типа Ordering. Но если строки имеют одинаковую длину, то вместо того, чтобы сразу вернуть значение EQ, мы хотим установить их расположение в алфавитном порядке.

Вот один из способов это записать:

lengthCompare :: String –> String –> Ordering

lengthCompare x y = let a = length x `compare` length y

                        b = x `compare` y

                     in if a == EQ then b else a

Результат сравнения длин мы присваиваем образцу a, результат сравнения по алфавиту – образцу b; затем, если оказывается, что длины равны, возвращаем их порядок по алфавиту.

Но, имея представление о том, что тип Ordering является моноидом, мы можем переписать эту функцию в более простом виде:

import Data.Monoid

lengthCompare :: String –> String –> Ordering

lengthCompare x y = (length x `compare` length y) `mappend`(x `compare` y)

Давайте это опробуем:

ghci> lengthCompare "ямб" "хорей"

LT

ghci> lengthCompare "ямб" "хор"

GT

Вспомните, что когда мы используем функцию mappend, сохраняется её левый параметр, если он не равен значению EQ; если он равен EQ, сохраняется правый. Вот почему мы поместили сравнение, которое мы считаем первым, более важным критерием, в качестве первого параметра. Теперь предположим, что мы хотим расширить эту функцию, чтобы она также сравнивала количество гласных звуков, и установить это вторым по важности критерием для сравнения. Мы изменяем её вот так:

import Data.Monoid

lengthCompare :: String –> String –> Ordering

lengthCompare x y = (length x `compare` length y) `mappend`

                    (vowels x `compare` vowels y) `mappend`

                    (x `compare` y)

   where vowels = length . filter (`elem` "аеёиоуыэюя")

Мы создали вспомогательную функцию, которая принимает строку и сообщает нам, сколько она содержит гласных звуков, сначала отфильтровывая в ней только буквы, находящиеся в строке "аеёиоуыэюя", а затем применяя функцию length.

ghci> lengthCompare "ямб" "абыр"

LT

ghci> lengthCompare "ямб" "абы"

LT

ghci> lengthCompare "ямб" "абр"

GT

В первом примере длины оказались различными, поэтому вернулось LT, так как длина слова "ямб" меньше длины слова "абыр". Во втором примере длины равны, но вторая строка содержит больше гласных звуков, поэтому опять возвращается LT. В третьем примере они обе имеют одинаковую длину и одинаковое количество гласных звуков, поэтому сравниваются по алфавиту, и слово "ямб" выигрывает.

Моноид для типа Ordering очень полезен, поскольку позволяет нам без труда сравнивать сущности по большому количеству разных критериев и помещать сами эти критерии по порядку, начиная с наиболее важных и заканчивая наименее важными.

Моноид Maybe

Рассмотрим несколько способов, которыми для типа Maybe a могут быть определены экземпляры класса Monoid, и обсудим, чем эти экземпляры полезны.

Один из способов состоит в том, чтобы обрабатывать тип Maybe a как моноид, только если его параметр типа a тоже является моноидом, а потом реализовать функцию mappend так, чтобы она использовала операцию mappend для значений, обёрнутых в конструктор Just. Мы используем значение Nothing как единичное, и поэтому если одно из двух значений, которые мы объединяем с помощью функции mappend, равно Nothing, мы оставляем другое значение. Вот объявление экземпляра:

instance Monoid a => Monoid (Maybe a) where

   mempty = Nothing

   Nothing `mappend` m = m

   m `mappend` Nothing = m

   Just m1 `mappend` Just m2 = Just (m1 `mappend` m2)

1 ... 65 66 67 68 69 70 71 72 73 ... 96
На этой странице вы можете бесплатно читать книгу Изучай Haskell во имя добра! - Миран Липовача бесплатно.

Оставить комментарий

Рейтинговые книги