Аппаратные интерфейсы ПК. Энциклопедия - Михаил Гук
- Дата:20.06.2024
- Категория: Компьютеры и Интернет / Компьютерное "железо"
- Название: Аппаратные интерфейсы ПК. Энциклопедия
- Автор: Михаил Гук
- Просмотров:4
- Комментариев:0
Шрифт:
Интервал:
Закладка:
♦ В циклах обращения к портам ввода-вывода для адресации любого байта используются все линии AD[31:0]. При этом биты адреса AD[31:2] указывают на адрес двойного слова, к которому принадлежат передаваемые данные, а младшие биты адреса AD[1:0] должны соответствовать байтам, которые могут быть разрешены сигналами С/BE[3:0]#. При AD[1:0]=00 допустимо С/BE[3:0]#=xxx0 или 1111, при AD[1:0]=01 — С/BE[3:0]#=xx01 или 1111, при AD[1:0]=10 — С/BE[3:0]#=х011 или 1111, при AD[1:0]=11 — С/BE[3:0]#=0111 (передается лишь байт 3) или 1111 (ни один байт не разрешен). Эти циклы тоже могут быть пакетными, хотя на практике эта возможность используется редко.
♦ В циклах конфигурационной записи/считывания устройство (карта расширения) выбирается индивидуальным сигналом IDSEL; функция адресуется битами AD[10:8], а конфигурационные регистры (только двойные слова) адресуются битами AD[7:2], при этом AD[1:0]=00.
Команды шины PCI определяются значениями бит С/BE# в фазе адреса (табл. 6.12).
♦ Команда подтверждения прерывания предназначена для чтения вектора прерываний. По протоколу она выглядит как команда чтения, неявно адресованная к системному контроллеру прерываний. Здесь в фазе адреса по шине AD полезная информация не передается, но ее инициатор (главный мост) должен обеспечить стабильность сигналов и корректность паритета. В PC 8-битный вектор передается в байте 0 по готовности контроллера прерываний (по сигналу TRDY#). Подтверждение прерываний выполняется за один цикл (первый холостой цикл, который процессоры х86 делают в дань совместимости со стариной, мостом подавляется).
♦ Специальный цикл отличается от всех других тем, что является широковещательным. Однако ни один агент на него не отвечает, а главный мост или иное устройство, вводящее этот цикл, всегда завершает его способом Master Abort (на него требуется 6 тактов шины). Специальный цикл предназначен для генерации широковещательных сообщений — их могут читать любые «заинтересованные» агенты шины. Тип сообщения декодируется содержимым линий AD[15:0], на линиях AD[31:16] могут помещаться данные, передаваемые в сообщении. Фаза адреса в этом цикле для обычных устройств отсутствует, но мосты используют ее информацию для управления распространением сообщения. Сообщения с кодами 0000h, 0001h и 0002h требуются для указания на отключение (Shutdown), остановку (Halt) процессора или специфические функции процессора x86, связанные с кэшем и трассировкой. Коды 0003-FFFFh зарезервированы. Специальный цикл может генерироваться тем же аппаратно-программным механизмом, что и конфигурационные циклы (см. п. 6.2.11), но со специфическим значением адреса.
♦ Команды чтения и записи ввода-вывода служат для обращения к пространству портов. Линии AD содержат адрес байта, причем декодированию подлежат и биты AD0 и AD1 (несмотря на то, что имеются сигналы ВЕх#). Порты PCI могут быть 16- или 32-битными. Для адресации портов на шине PCI доступны все 32 бита адреса, но процессоры х86 могут использовать только младшие 16 бит.
♦ Команды обращения к памяти, кроме обычного чтения и записи, включают чтение строк кэш-памяти, множественное чтение (нескольких строк), запись с инвалидацией.
♦ Команды конфигурационного чтения и записи адресуются к конфигурационному пространству устройств (см. п. 6.2.12). Обращение производится только двойными словами. Структура содержит идентификатор устройства и производите для, состояние и команду, информацию о занимаемых ресурсах и ограничения на использование шины. Для генерации данных команд требуется специальный аппаратно-программный механизм (см. п. 6.2.11).
♦ Чтение строк памяти применяется, когда в транзакции планируется более двух 32-битных передач (обычно это чтение до конца строки кэша).
♦ Множественное чтение памяти используется для транзакций, пересекающих границы строк кэш-памяти.
♦ Запись с инвалидацией применяется к целым строкам кэша и позволяет оптимизировать циклы обратной записи «грязных» строк кэша.
♦ Двухадресный цикл позволяет по 32-битной шине обращаться к устройствам с 64-битной адресацией. В этом случае младшие 32 бита адреса передаются в цикле данного типа, а за ним следует обычный цикл, определяющий тип обмена и несущий старшие 32 бита адреса. Шина PCI допускает 64-битную адресацию портов ввода-вывода (для х86 это бесполезно, но PCI существует и на других платформах).
Таблица 6.12. Декодирование команд шины PCI
С/BE[3:0] Тип команды 0000 Interrupt Acknowledge — подтверждение прерывания 0001 Special Cycle — специальный цикл 0010 I/O Read — чтение порта ввода-вывода 0011 I/O Write — запись в порт ввода-вывода 0100 Зарезервировано 0101 Зарезервировано 0110 Memory Read — чтение памяти 0111 Memory Write — запись в память 1000 Зарезервировано 1001 Зарезервировано 1010 Configuration Read — конфигурационное считывание 1011 Configuration Write — конфигурационная запись 1100 Multiple Memory Read — множественное чтение памяти 1101 Dual Address Cycle (DAC) — двухадресный цикл 1110 Memory-Read Line — чтение строки памяти 1111 Memory Write and Invalidate — запись с инвалидацией6.2.5. Пропускная способность шины
Шина PCI является самой высокоскоростной шиной расширения современных ПК, однако и ее реальная пропускная способность, увы, не так уж и высока. Рассмотрим наиболее распространенный вариант: разрядность 32 бита, частота 33 МГц. Как указывалось выше, пиковая скорость передачи данных внутри пакетного цикла составляет 132 Мбайт/с, то есть за каждый такт шины передаются 4 байта данных (33×4=132). Однако пакетные циклы выполняются далеко не всегда. Процессор общается с устройствами PCI инструкциями обращения к памяти или вводу-выводу через главный мост, который шинные транзакции процессора транслирует в транзакции шины PCI. Поскольку у процессоров х86 основные регистры 32-разрядные, то одна инструкция порождает транзакцию с устройством PCI, в которой передается не более 4 байт данных, что соответствует одиночной передаче. Если же адрес передаваемого (двойного) слова не выровнен по соответствующей границе, то будут порождены два одиночных цикла или один пакетный с двумя фазами данных, но в любом случае это обращение будет выполняться дольше, чем при выровненном адресе.
Однако при записи массива данных в устройство PCI (передача с последовательно нарастающим адресом) мост может пытаться организовать пакетные циклы. У современных процессоров (начиная с Pentium) шина данных 64-битная и применяется буферизация записи, так что два последовательных 32-битных запроса записи объединятся в один 64-битный. Этот запрос, если он адресован к 32-битному устройству, мост попытается передать пакетом с двумя фазами данных. «Продвинутый» мост может пытаться собирать в пакет и последовательные запросы, что может породить пакет существенной длины. Пакетные циклы записи можно наблюдать, например, передавая массив данных из ОЗУ в устройство PCI строковой инструкцией MOVSD, используя префикс повтора REP. Тот же эффект даст и цикл последовательных операций LODSW, STOSW (и иных инструкциях обращения к памяти). Поскольку у современных процессоров ядро исполняет инструкции гораздо быстрее, чем шина способна вывести их результаты, между инструкциями, порождающими объединяемые записи, процессор может успеть выполнить еще несколько операций. Однако если пересылка данных организуется директивой языка высокого уровня, которая ради универсальности работает гораздо сложнее вышеприведенных ассемблерных примитивов, транзакции, скорее всего, будут уже одиночными (у буферов записи процессора не хватит «терпения» придержать один 32-битный запрос до появления следующего, или же произойдет принудительная выгрузка буферов записи процессора или моста по запросу чтения, см. п. 6.2.10).
- Защита компьютера на 100%: cбои, ошибки и вирусы - Петр Ташков - Компьютерное "железо"
- Время — деньги. Создание команды разработчиков программного обеспечения - Эд Салливан - Деловая литература
- Шлюпка. Устройство и управление - Л. Иванов - Техническая литература
- Формирование технологии разработки и принятия предпринимательских решений - Д. Кенина - Управление, подбор персонала
- Язык программирования C++. Пятое издание - Стенли Липпман - Программирование