Аппаратные интерфейсы ПК. Энциклопедия - Михаил Гук
0/0

Аппаратные интерфейсы ПК. Энциклопедия - Михаил Гук

Уважаемые читатели!
Тут можно читать бесплатно Аппаратные интерфейсы ПК. Энциклопедия - Михаил Гук. Жанр: Компьютерное "железо". Так же Вы можете читать полную версию (весь текст) онлайн книги без регистрации и SMS на сайте Knigi-online.info (книги онлайн) или прочесть краткое содержание, описание, предисловие (аннотацию) от автора и ознакомиться с отзывами (комментариями) о произведении.
Описание онлайн-книги Аппаратные интерфейсы ПК. Энциклопедия - Михаил Гук:
Книга посвящена аппаратным интерфейсам, использующимся в современных персональных компьютерах и окружающих их устройствах. В ней подробно рассмотрены универсальные внешние интерфейсы, специализированные интерфейсы периферийных устройств, интерфейсы устройств хранения данных, электронной памяти, шины расширения, аудио и видеоинтерфейсы, беспроводные интерфейсы, коммуникационные интерфейсы, вспомогательные последовательные интерфейсы. Сведения по интерфейсам включают состав, описание сигналов и их расположение на разъемах, временные диаграммы, регистровые модели интерфейсных адаптеров, способы использования в самостоятельно разрабатываемых устройствах. Книга адресована широкому кругу специалистов, связанных с эксплуатацией ПК, а также разработчикам аппаратных средств компьютеризированной аппаратуры и их программной поддержки.
Читем онлайн Аппаратные интерфейсы ПК. Энциклопедия - Михаил Гук

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 22 23 24 25 26 27 28 29 30 ... 173

Хаб является ключевым элементом системы PnP в архитектуре USB. Хаб выполняет множество функций:

♦ обеспечивает физическое подключение устройств, формируя и воспринимая сигналы в соответствии со спецификацией шины на каждом из своих портов;

♦ управляет подачей питающего напряжения на нисходящие порты, причем предусматривается установка ограничения на ток, потребляемый каждым портом;

♦ отслеживает состояние подключенных к нему устройств, уведомляя хост об изменениях;

♦ обнаруживает ошибки на шине, выполняет процедуры восстановления и изолирует неисправные сегменты шины;

♦ обеспечивает связь сегментов шины, работающих на разных скоростях.

Хаб следит за сигналами, генерируемыми устройствами. Неисправное устройство может не вовремя «замолчать» (потерять активность) или, наоборот, что-то «бормотать» (babble). Эти ситуации отслеживает ближайший к устройству хаб и запрещает восходящие передачи от такого устройства не позже, чем по границе (микро)кадра. Благодаря бдительности хабов эти ситуации не позволят неисправному устройству заблокировать всю шину.

Каждый из нисходящих (downstream) портов может быть разрешен или запрещен, а также сконфигурирован на высокую, полную или ограниченную скорость обмена. Хабы могут иметь световые индикаторы состояния нисходящих портов, управляемые автоматически (логикой хаба) или программно (хост-контроллером). Индикатор может представлять собой пару светодиодов — зеленый и желтый (янтарный) или один светодиод с изменяющимся цветом. Состояние порта представляется следующим образом:

♦ не светится — порт не используется;

♦ зеленый — нормальная работа;

♦ желтый — ошибка;

♦ зеленый мигающий — программа требует внимания пользователя (Software attention);

♦ желтый мигающий — аппаратура требует внимания пользователя (Hardware attention).

Восходящий (upstream) порт хаба конфигурируется и внешне представляется как полноскоростной или высокоскоростной (только для USB 2.0). При подключении порт хаба USB 2.0 обеспечивает терминацию по схеме FS, в режим HS он переводится только по команде контроллера.

На рис. 4.3 приведен вариант соединения устройств и хабов, где высокоскоростным устройством USB 2.0 является только телекамера, передающая видеопоток без компрессии. Подключение принтера и сканера USB 1.1 к отдельным портам хаба 2.0, да еще и развязка их с аудиоустройствами, позволяет им использовать полосу шины по 12 Мбит/с каждому. Таким образом, из общей полосы 480 Мбит/с на «старые» устройства (USB 1.0) выделяется 3×12=36 Мбит/с. Вообще-то можно говорить и о полосе в 48 Мбит/с, поскольку клавиатура и мышь подключены к отдельному порту хост-контроллера USB 2.0, но эти устройства «освоят» только малую толику из выделенных им 12 Мбит/с. Конечно, можно подключать клавиатуру и мышь к порту внешнего хаба, но с точки зрения повышения надежности системные устройства ввода лучше подключать наиболее коротким (по количеству кабелей, разъемов и промежуточных устройств) способом. Неудачной конфигурацией было бы подключение принтера (сканера) к хабу USB 1.1 — во время работы с аудиоустройствами (если они высокого качества) скорость печати (сканирования) будет падать. Неработоспособной конфигурацией явилось бы подключение телекамеры к порту хаба USB 1.1.

Рис. 4.3. Пример конфигурации соединений

При планировании соединений следует учитывать способ питания устройств: устройства, питающиеся от шины, как правило, подключают к хабам, питающимся от сети. К хабам, питающимся от шины, подключают лишь маломощные устройства — так, к клавиатуре USB, содержащей внутри себя хаб, подключают мышь USB и другие устройства-указатели (трекбол, планшет).

Управление энергопотреблением является весьма развитой функцией USB. Для устройств, питающихся от шины, мощность ограничена. Любое устройство при подключении не должно потреблять от шины ток, превышающий 100 мА. Рабочий ток (не более 500 мА) заявляется в конфигурации. Если хаб не может обеспечить устройству заявленный ток, оно не конфигурируется и, следовательно, не может быть использовано.

Устройство USB должно поддерживать режим приостановки (suspended mode), в котором его потребляемый ток не превышает 500 мкА. Устройство должно автоматически приостанавливаться при прекращении активности шины.

Возможность удаленного пробуждения (remote wakeup) позволяет приостановленному устройству подать сигнал хост-компьютеру, который тоже может находиться в приостановленном состоянии. Возможность удаленного пробуждения описывается в конфигурации устройства. При конфигурировании эта функция может быть запрещена.

4.1.2. Модель передачи данных

Каждое устройство на шине USB (их может быть до 127) при подключении автоматически получает свой уникальный адрес. Логически устройство представляет собой набор независимых конечных точек (endpoint, ЕР), с которыми хост-контроллер (и клиентское ПО) обменивается информацией. Каждая конечная точка имеет свой номер и описывается следующими параметрами:

♦ требуемая частота доступа к шине и допустимые задержки обслуживания;

♦ требуемая полоса пропускания канала;

♦ требования к обработке ошибок;

♦ максимальные размеры передаваемых и принимаемых пакетов;

♦ тип передачи;

♦ направление передачи (для передач массивов и изохронного обмена).

Каждое устройство обязательно имеет конечную точку с номером 0, используемую для инициализации, общего управления и опроса состояния устройства. Эта точка всегда сконфигурирована при включении питания и подключении устройства к шине. Она поддерживает передачи типа «управление» (см. ниже).

Кроме нулевой точки, устройства-функции могут иметь дополнительные точки, реализующие полезный обмен данными. Низкоскоростные устройства могут иметь до двух дополнительных точек, полноскоростные — до 15 точек ввода и 15 точек вывода (протокольное ограничение). Дополнительные точки (а именно они и предоставляют полезные для пользователя функции) не могут быть использованы до их конфигурирования (установления согласованного с ними канала).

Каналом (pipe) в USB называется модель передачи данных между хост- контроллером и конечной точкой устройства. Имеются два типа каналов: потоки и сообщения. Поток (stream) доставляет данные от одного конца канала к другому, он всегда однонаправленный. Один и тот же номер конечной точки может использоваться для двух поточных каналов — ввода и вывода. Поток может реализовывать следующие типы обмена: передача массивов, изохронный и прерывания. Сообщение (message) имеет формат, определенный спецификацией USB. Хост посылает запрос к конечной точке, после которого передается (принимается) пакет сообщения, за которым следует пакет с информацией состояния конечной точки. Последующее сообщение нормально не может быть послано до обработки предыдущего, но при отработке ошибок возможен сброс необслуженных сообщений. Двусторонний обмен сообщениями адресуется к одной и той же конечной точке.

С каналами связаны характеристики, соответствующие конечной точке (полоса пропускания, тип сервиса, размер буфера и т.п.). Каналы организуются при конфигурировании устройств USB. Для каждого включенного устройства существует канал сообщений (Control Pipe 0), по которому передается информация конфигурирования, управления и состояния.

4.1.3. Протокол

Все обмены (транзакции) с устройствами USB состоят из двух-трех пакетов. Каждая транзакция планируется и начинается по инициативе контроллера, который посылает пакет-маркер (token packet). Он описывает тип и направление передачи, адрес устройства USB и номер конечной точки. В каждой транзакции возможен обмен только между адресуемым устройством (его конечной точкой) и хостом. Адресуемое маркером устройство распознает свой адрес и готовится к обмену. Источник данных (определенный маркером) передает пакет данных (или уведомление об отсутствии данных, предназначенных для передачи). После успешного приема пакета приемник данных посылает пакет квитирования (handshake packet)? Последовательность пакетов в транзакциях иллюстрирует рис. 4.4.

Рис. 4.4. Последовательности пакетов: а — вывод, б — ввод

Хост-контроллер организует обмены с устройствами согласно своему плану распределения ресурсов. Контроллер циклически (с периодом 1,0±0,0005 мс) формирует кадры (frames), в которые укладываются все запланированные транзакции (рис. 4.5). Каждый кадр начинается с посылки маркера SOF (Start Of Frame), который является синхронизирующим сигналом для всех устройств, включая хабы. В конце каждого кадра выделяется интервал времени EOF (End Of Frame), на время которого хабы запрещают передачу по направлению к контроллеру. В режиме HS пакеты SOF передаются в начале каждого микрокадра (период 125±0,0625 мкс). Хост планирует загрузку кадров так, чтобы в них всегда находилось место для транзакций управления и прерываний. Свободное время кадров может заполняться передачами массивов (bulk transfers). В каждом (микро)кадре может быть выполнено несколько транзакций, их допустимое число зависит от длины поля данных каждой из них.

1 ... 22 23 24 25 26 27 28 29 30 ... 173
На этой странице вы можете бесплатно читать книгу Аппаратные интерфейсы ПК. Энциклопедия - Михаил Гук бесплатно.

Оставить комментарий

Рейтинговые книги